[1]
G. Praveen, and J. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures 35 (1998) 4457-4476.
DOI: 10.1016/s0020-7683(97)00253-9
Google Scholar
[2]
K. Shukla, Nonlinear static and dynamic analysis of functionally graded plates Int. J. of Appl. Mech. and Eng. 11 (2006) 679-698.
Google Scholar
[3]
X. Zhao, Y. Lee, and K. Liew, Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. Journal of Sound and Vibration 319 (2009) 918-939.
DOI: 10.1016/j.jsv.2008.06.025
Google Scholar
[4]
A. Ferreira, R. Batra, C. Roque, L. Qian, and R. Jorge, Natural frequencies of functionally graded plates by a meshless method. Composite Structures 75 (2006) 593-600.
DOI: 10.1016/j.compstruct.2006.04.018
Google Scholar
[5]
X. Huang, and H. Shen, Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. International Journal of Solids and Structures 41 (2004) 2403-2427.
DOI: 10.1016/j.ijsolstr.2003.11.012
Google Scholar
[6]
H. Matsunaga, Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory. Composite Structures 90 (2009) 76-86.
DOI: 10.1016/j.compstruct.2009.02.004
Google Scholar
[7]
A. Khdeir, and J. Reddy, Free vibrations of laminated composite plates using second-order shear deformation theory. Computers & Structures 71 (1999) 617-626.
DOI: 10.1016/s0045-7949(98)00301-0
Google Scholar
[8]
A.R. Saidi, and S. Sahraee, Axisymmetric solutions of functionally graded circular and annular plates using second-order shear deformation plate theory, Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, (2006).
DOI: 10.1115/esda2006-95699
Google Scholar
[9]
A. Shahrjerdi, M. Bayat, F. Mustapha, S.M. Sapuan, F. Mustapha, and R. Zahari, Free Vibration Analysis of Functionally Graded Quadrangle Plates Using Second Order Shear Deformation Theory. Australian Journal of Basic and Applied Sciences 3 (2009).
DOI: 10.4028/www.scientific.net/kem.471-472.133
Google Scholar
[10]
A. shahrjerdi, M. Bayat, F. Mustapha, S.M. sapuan, and R. Zahari, Second Order Shear Deformation Theory to Analyze Stress Distribution for Solar Functionally Graded Plates. Mech. Based Des. Struct. Mach. In press (2010).
DOI: 10.1080/15397731003744603
Google Scholar
[11]
Y. Kim, Temperature dependent vibration analysis of functionally graded rectangular plates. Journal of Sound and Vibration 284 (2005) 531-549.
DOI: 10.1016/j.jsv.2004.06.043
Google Scholar
[12]
J. Yang, and H. Shen, Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. Journal of Sound and Vibration 255 (2002) 579-602.
DOI: 10.1006/jsvi.2001.4161
Google Scholar