Corrosion Resistance Study of Electrophoretic Deposited Hydroxyapatite on Stainless Steel for Implant Applications

Article Preview

Abstract:

Stainless steel (SS) is often used for orthopaedic and dental implants because of its excellent mechanical characteristics. However, from an electrochemical perspective, SS can be susceptible to corrosion-related problems. Inorganic bioactive coatings on SS surfaces are reported to impart corrosion resistance and enhance biocompatibility. In this paper, hydroxyapatite (HA) coatings were developed on SS 316L by an electrophoretic deposition (EPD) technique at applied deposition voltages from 10 to 60 V in an acidic aqueous solution. The present study was performed to optimise the applied voltage required to produce stable HA coatings on SS 316L. Their corrosion resistance in simulated body conditions were investigated using the potentiodynamic polarisation curves. The results of the electrochemical studies revealed that the optimal applied voltage for EPD of HA on SS 316L was 40 V. The polarisation parameters, such as the corrosion potential, breakdown potential and repassivation potential of HA coated materials demonstrated nobler behaviours than the uncoated SS 316L. These results validated the successful formation of stable and protective HA coatings on SS 316L.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-146

Citation:

Online since:

March 2012

Export:

Price:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sivakumar, M., U. Kamachi Mudali, and S. Rajeswari: J. Mater. Sci. Lett., 1995. 14. 148-151.

Google Scholar

[2] Gopi, D., V.C.A. Prakash, and L. Kavitha: Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 2009. 29. 955-958.

Google Scholar

[3] Sridhar, T.M., U.K. Mudali, and M. Subbaiyan: Corros. Sci., 2003. 45. 237-252.

Google Scholar

[4] Dobbs, H.S. and J.T. Scales, eds. Fracture and corrosion in stainless steel total hip replacement stem. Corrosion and degradation of implanted materials, ed. B.C. Syrett and A. Acharya. Vol. ASTM STP 684. 1979, American Society for Testing and Materials. 254-258.

DOI: 10.1520/stp35948s

Google Scholar

[5] Sutow, E.J. and S.R. Pollack, eds. Biocompatibility of Clinical Implant Materials I. ed. D.F. William. 1981, CRC Press: Boca Raton, FL. 45-48.

Google Scholar

[6] Gurappa, I.: Surf. Coat. Technol., 2002. 161. 70-78.

Google Scholar

[7] Sivakumar, M. and S. Rajeswari: J. Mater. Sci. Lett., 1992. 11. 1039-1042.

Google Scholar

[8] Tüken, T.: Surf. Coat. Technol., 2006. 200. 4713-4719.

Google Scholar

[9] Lemons, J.E.: Surf. Coat. Technol., 1998. 103-104. 135-137.

Google Scholar

[10] Gurrappa, I.: Corrosion Prevention and Control, 2001. 48. 23-37.

Google Scholar

[11] González-Carrasco, J.L., et al.: Mater. Manuf. Processes, 1998. 13. 431-443.

Google Scholar

[12] Montenero, A., et al.: J. Mater. Sci., 2000. 35. 2791-2797.

Google Scholar

[13] Feng, B., J.Y. Chen, and X.D. Zhang: Key Eng. Mater., 2001. 192-195. 167-170.

Google Scholar

[14] Gao, W., Z. Liu, and Z. Li: Adv. Mater. (Weinheim, Ger. ), 2001. 13. 1001-1004.

Google Scholar

[15] Kawahara, H.: Clinical Materials, 1987. 2. 181-206.

Google Scholar

[16] Kim, T.N., et al.: Surf. Coat. Technol., 1998. 99. 20-23.

Google Scholar

[17] Oh, K.T. and Y.S. Park: Surf. Coat. Technol., 1998. 110. 4-12.

Google Scholar

[18] Xiao, X.F. and R.F. Liu: Mater. Lett., 2006. 60. 2627-2632.

Google Scholar

[19] White, A.A., S.M. Best, and I.A. Kinloch: Int. J. Appl. Ceram. Technol., 2007. 4. 1-13.

Google Scholar

[20] Suchanek, W. and M. Yoshimura: J. Mater. Res., 1998. 13. 94-117.

Google Scholar

[21] Boccaccini, A.R. and I. Zhitomirsky: Curr. Opin. Solid State Mat. Sci., 2002. 6. 251-260.

Google Scholar

[22] Van der Biest, O.O. and L.J. Vandeperre: Annu. Rev. Mater. Sci., 1999. 29. 327-352.

DOI: 10.1146/annurev.matsci.29.1.327

Google Scholar

[23] Boccaccini, A.R., et al.: J. Ceram. Soc. Jpn., 2006. 14. 1-14.

Google Scholar

[24] Jacobs, J.J., J.L. Gilbert, and R.M. Urban: J. Bone Joint Surg. -Am. Vol., 1998. 80A. 268-282.

Google Scholar

[25] Kokubo, T., et al.: J. Biomed. Mater. Res., 1990. 24. 331-343.

Google Scholar

[26] Kokubo, T., et al.: J. Biomed. Mater. Res., 1990. 24. 721-734.

Google Scholar

[27] Al-Mobarak, N.A., A.A. Al-Swayih, and F.A. Al-Rashoud: Int. J. Electrochem. Sci., 2011. 6. 2031-(2042).

Google Scholar

[28] Gluszek, J. and J. Masalski: Br. Corros. J., 1992. 27. 135-138.

Google Scholar

[29] Szklarska-Smialowska, z., Pitting corrosion of Metals. 1986, Houston, Tex.: NACE International.

Google Scholar

[30] Ducheyne, P., et al.: Biomaterials, 1990. 11. 244-254.

Google Scholar

[31] Stratmann, M. and G.S. Frankel, eds. Encyclopedia of electrochemistry: Corrosion and oxide films. Electrochemical Techniques for Corrosion, ed. G.S. Frankel and M. Rohwerder. Vol. 4. 2003, Wiley-VCH: the University of Michigan. 745.

DOI: 10.1002/9783527610426.bard040007

Google Scholar

[32] Sivakumar, M., U.K. Mudali, and S. Rajeswari: J. Mater. Eng. Perform., 1994. 3. 744-753.

Google Scholar