Investigation of TiO2 Ceramic Surface Conductivity Using Conductive Atomic Force Microscopy

Article Preview

Abstract:

Dense TiO2 (rutile) ceramic samples were prepared by sintering compacts of titanium dioxide anatase powder at 1500 °C for 5h. Sintered samples were polished and annealed in vacuum at 1000 °C for 1h. Structural properties of the samples were studied by X-ray diffraction, polarized light and scanning electron microscopy. The surface topography and local electrical conductivity of the samples were investigated by atomic force microscopy technique under atmospheric conditions. Enhanced electrical conductivity was observed at grain boundaries while the polished, vacuum annealed grains surface showed non-homogeneous conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-158

Citation:

Online since:

November 2012

Export:

Price:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep., Vol. 48 (2003), p.53 – 229.

Google Scholar

[2] L. Liborio, N. Harrison, Thermodynamics of oxygen defective Magneli phases in rutile: A first-principles study, Phys. Rev. B, Vol. 77 (2008), 104104.

DOI: 10.1103/physrevb.77.104104

Google Scholar

[3] M.J.J. Jak, A. van Kreuningen, J. Verhoeven, J.W.M. Frenken, The effect of stoichiometry on the stability of steps on TiO2 (110), Appl. Surf. Sci., 201 (2002), p.161–170.

DOI: 10.1016/s0169-4332(02)00844-9

Google Scholar

[4] K. Zakarzewska, Nonstoichiometry in TiO2-y studied by ion beam methods and photoelectron spectroscopy, Adv. Mater. Sci. Eng., Vol. 2012, ID 826873.

Google Scholar

[5] N.J. Kinder, Z.J. Homrighaus, B.J. Ingram, T.O. Mason, E.J. Garboczi, Impedance/dielectric spectroscopy of electroceramics-part 1: Evaluation of composite models for polycrystalline ceramics, J. Electroceram, Vol. 14 (2005), pp.283-291.

DOI: 10.1007/s10832-005-0969-0

Google Scholar

[6] W. Zhang, P. Sachenko, I. Gladwell, Thermal grain boundary grooving with anisotropic surface free energies, Acta Mater, Vol. 52 (2004), pp.107-116.

DOI: 10.1016/j.actamat.2003.08.033

Google Scholar

[7] K. D. O'Neil, H. He, P. Keech, D.W. Shoesmith, O. A. Semenikhin, Anisotropy of local electrical conductivity of hyper-stoichiometric uranium dioxide revealed by current-sensing atomic force microscopy (CS-AFM), Electrochem. Commun., Vol. 10 (2008), pp.1805-1808.

DOI: 10.1016/j.elecom.2008.09.009

Google Scholar

[8] Z. Shen, M. Eguchi, T. Gotoh, N. Yoshida, T. Itoh, S. Nonomura, Localized oxidation influence from conductive atomic force microscope measurement on nano-scale I-V characterization of silicon thin film solar cells, Thin Solid Films, Vol. 516 (2008), pp.588-592.

DOI: 10.1016/j.tsf.2007.06.198

Google Scholar

[9] T-H. Fang, T.H. Wang, K-T.Wu, Local oxidation of titanium films by non-contact atomic force microscopy, Microelectron. Eng., Vol. 85 (2008), pp.1616-1623.

DOI: 10.1016/j.mee.2008.03.013

Google Scholar

[10] C. Huh, S-J. Park, Atomic force microscope tip-induced anodization of titanium film for nanofabrication of oxide patterns, J. Vac. Sci. Technol. B, Vol. 18(1) (2000), pp.55-59.

DOI: 10.1116/1.591150

Google Scholar