[1]
P.M. Kelly, L.R. Francis Rose, The martensitic transformation in ceramics – its role in transformation toughening, Progress in Materials Science. 47 (2002) 463–557.
DOI: 10.1016/s0079-6425(00)00005-0
Google Scholar
[2]
B. Basu, Toughening of yttria-stabilised tetragonal zirconia ceramics, International Materials Reviews. 50, No.4, (2005) 239–259.
DOI: 10.1179/174328005x41113
Google Scholar
[3]
Y.M. Liang, J.H. Zhao. Effect of zirconia particles size distribution on the toughness of zirconia-containing ceramics, Journal of Material Science. 34, (1999), 2175–2181.
Google Scholar
[4]
I. Hussainova, M. Antonov, N. Voltsihhin, Assessment of zirconia doped hardmetals as tribomaterials, Wear. 271, (2011), 1909 – (1915)
DOI: 10.1016/j.wear.2010.11.034
Google Scholar
[5]
I. Hussainova, A. Smirnov, M. Antonov, Mechanical characterization and wear performance of WC-ZrO2-Ni cermets produced by hot isostatic pressing, Advanced Materials Research. Book series: Advances in Key Engineering Materials. 214, (2011), 344 – 348.
DOI: 10.4028/www.scientific.net/amr.214.344
Google Scholar
[6]
E.N. Vilchevskaya, A.B. Freidin. On phase transformations in a material inhomogeneity. Part I. A phase-transforming inclusion in a uniform external field. Mechanics of Solids. (2007) No. 5, 823-840.
DOI: 10.3103/s0025654407050159
Google Scholar
[7]
E.N. Vilchevskaya, I.K. Korolev, A.B. Freidin. On phase transformations in a material inhomogeneity. Part II. Interaction of a crack with an inclusion experiencing a phase transition. Mechanics of Solids. (2011) No. 5, 683-691.
DOI: 10.3103/s0025654411050049
Google Scholar
[8]
S.K. Kanaun, V.M. Levin. Self-consistent methods for composites. Vol.1: Static Problems, Springer, 2007. 392 p.
Google Scholar
[9]
W.H. Tuan et al. Mechanical properties of Al2O3/ZrO2 composites, Journal of European Ceramic Society. 22, (2002), 2827–2833.
DOI: 10.1016/s0955-2219(02)00043-2
Google Scholar
[10]
A.B. Freidin. On new phase inclusions in elastic solids , ZAMM. 87, No. 2, (2007) 102-116.
DOI: 10.1002/zamm.200610305
Google Scholar
[11]
R.C. Garvie, M.V. Swain, Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals, Part 1, J. of Material Science. 20 (1985) 1193–1200.
DOI: 10.1007/bf01026313
Google Scholar
[12]
R.C. Garvie, Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals, Part 2, J. of Material Science. 20 (1985) 3479–3486.
DOI: 10.1007/bf01026313
Google Scholar
[13]
Yosuke Moriya, Alexandra Navrotsky. High-temperature calorimetry of zirconia: Heat capacity and thermodynamics of the monoclinic-tetragonal phase transition. J. Chem. Thermodynamics. 38 (2006) 211–223.
DOI: 10.1016/j.jct.2005.05.002
Google Scholar
[14]
H. Balmori-Ramirez, D. Jaramillo-Vigueras, M. Rigaud. Microstructure of Al2O3-PSZ(MgO) composites, Journal of Materials Science. 14 (1995) 603–605.
DOI: 10.1007/bf00275391
Google Scholar
[15]
M.Yu. Gutkin, Misfits stress relaxation in composite nanoparticles, International Journal of Engineering Science. In Press (2012)
Google Scholar