[1]
L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 5 (1971) 117-141.
DOI: 10.1002/jbm.820050611
Google Scholar
[2]
L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705-1728.
Google Scholar
[3]
L.L. Hench, Genetic design of bioactive glass, J. Eur. Ceram. Soc. 29 (2009) 1257-1265.
Google Scholar
[4]
I.D. Xynos, M.V. J Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J. M Polak, Bioglass 45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In vitro: Implications and Applications for Bone Tissue Engineering, Calcif. Tissue Int. 67 (2000).
DOI: 10.1007/s002230001134
Google Scholar
[5]
J.Y. Sun, Y.S. Yang, J. Zhong, D.C. Greenspan, The effect of the ionic products of Bioglass® dissolution on human osteoblasts growth cycle in vitro, J. Tissue Eng. Regen. Med. 1 (2007) 281-286.
DOI: 10.1002/term.34
Google Scholar
[6]
A.A. Gorustovich, J.A. Roether, A.R. Boccaccini, Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences, Tissue Eng. 16 B (2010) 199-207.
DOI: 10.1089/ten.teb.2009.0416
Google Scholar
[7]
S. Oh, N. Oh, M. Appleford, J.L. Ong, Bioceramics for Tissue Engineering Applications-A Review, Am. J. Biochem. Biotechnol. 2 (2006) 49-56.
Google Scholar
[8]
A.S. Brydone, D. Meek, S. Maclaine, Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the institution of mechanical engineers, J. Eng. Med. 224 H (2010) 1329–1343.
DOI: 10.1243/09544119jeim770
Google Scholar
[9]
C.M. Agrawal, R.B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res. 55 (2001) 141-150.
DOI: 10.1002/1097-4636(200105)55:2<141::aid-jbm1000>3.0.co;2-j
Google Scholar
[10]
S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng. 7 (2001) 679-689.
DOI: 10.1089/107632701753337645
Google Scholar
[11]
Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials 27 (2006) 2414-2425.
DOI: 10.1016/j.biomaterials.2005.11.025
Google Scholar
[12]
D.M. Yunos, O. Bretcanu, A.R. Boccaccini, Polymer-bioceramic composites for tissue engineering scaffolds, J. Mater. Sci. 43 (2008) 4433-4442.
DOI: 10.1007/s10853-008-2552-y
Google Scholar
[13]
W. Xia, J. Chang, Bioactive glass scaffold with similar structure and mechanical properties of cancellous bone, J. Biomed. Mater. Res. 95 B (2010) 449-455.
DOI: 10.1002/jbm.b.31736
Google Scholar
[14]
M. Mozafari, F. Moztarzadeh, M. Rabiee, M. Azami, S. Maleknia, M. Tahriri, Z. Moztarzadeh, N. Nezafati, Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering, Ceram. Int. 36 (2010).
DOI: 10.1016/j.ceramint.2010.07.010
Google Scholar
[15]
S.M. Lien, L.Y. Ko, T.J. Huang, Effect of crosslinking temperature on compression strength of gelatin scaffold for articular cartilage tissue engineering, Mater. Sci. Eng. 30 C (2010) 631-635.
DOI: 10.1016/j.msec.2010.02.019
Google Scholar
[16]
M. Dressler, F. Dombrowski, U. Simon, J. Börnstein, V.D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar, M. Neumann, Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics, J. Eur. Ceram. Soc. 31 (2011) 523-529.
DOI: 10.1016/j.jeurceramsoc.2010.11.004
Google Scholar
[17]
W.J.E.M. Habraken, J.G.C. Wolke, J.A. Jansen, Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 234-248.
DOI: 10.1016/j.addr.2007.03.011
Google Scholar
[18]
H.W. Kim, J. C Knowles, H.E. Kim, Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds, J. Biomed. Mater. Res. 72 A (2005) 136-145.
DOI: 10.1002/jbm.a.30168
Google Scholar
[19]
V. Mouriño, A.R. Boccaccini, Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds, J. R. Soc. Interface 7 (2010) 209-227.
DOI: 10.1098/rsif.2009.0379
Google Scholar
[20]
A.L. Pataro, C.F. Franco, V.R. Santos, M.E. Cortés, R.D. Sinisterra, Surface effects and desorption of tetracycline supramolecular complex on bovine dentine, Biomaterials 24 (2003) 1075-1080.
DOI: 10.1016/s0142-9612(02)00403-9
Google Scholar
[21]
A.L. Pataro, M.F. Oliveira, K.I.R. Teixeira, R.M.M. Turchetti-Maia, M.T.P. Lopes, F.H.L. Wykrota, R.D. Sinisterra, M.E. Cortes, Polymer: Bioceramic composites optimization by tetracycline addition, Int. J. Pharm. 336 (2007) 75-81.
DOI: 10.1016/j.ijpharm.2006.11.038
Google Scholar
[22]
T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24 (1990) 721-734.
DOI: 10.1002/jbm.820240607
Google Scholar
[23]
M. Vallet-Regí, A.M. Romero, C.V. Ragel, R.Z. LeGeros, XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses, J. Biomed. Mater. Res. 44 (1999) 416-421.
DOI: 10.1002/(sici)1097-4636(19990315)44:4<416::aid-jbm7>3.0.co;2-s
Google Scholar
[24]
J.R. Jones, P. Sepulveda, L.L. Hench, Dose-dependent behavior of bioactive glass dissolution, J. Biomed. Mater. Res. 58 (2001) 720–726.
DOI: 10.1002/jbm.10053
Google Scholar
[25]
M. Erol, A. Özyuğuran, Ö. Özarpat, S. Küçükbayrak, 3D Composite scaffolds using strontium containing bioactive glasses, J. Eur. Ceram. Soc. 32 (2012) 2747-2755.
DOI: 10.1016/j.jeurceramsoc.2012.01.015
Google Scholar
[26]
Q.Z. Chen, A.R. Boccaccini, Poly(D, L-lactic acid) coated 45S5 Bioglass (R)-based scaffolds: Processing and characterization, J. Biomed. Mater. Res. 77 A (2006) 445-457.
DOI: 10.1002/jbm.a.30636
Google Scholar
[27]
O. Bretcanu, Q.Z. Chen, S.K. Misra, I. Roy, E. Verne, C.V. Brovarone, A.R. Boccaccini, Biodegradable polymer coated 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering, Europ. J. Glass Sci. Technol. 48 A (2007) 227-234.
DOI: 10.1016/j.biomaterials.2005.11.025
Google Scholar
[28]
B. Liu, P. Lin, Y. Shen, Y. Dong, Porous bioceramics reinforced by coating gelatin, J. Mater. Sci. Mater. Med. 19 (2008) 1203-1207.
DOI: 10.1007/s10856-007-3216-1
Google Scholar
[29]
M. Cicuéndez, I. Izquierdo-Barba, S. Sánchez-Salcedo, M. Vila, M. Vallet-Regí, Biological performance of hydroxyapatite–biopolymer foams: In vitro cell response, Acta Biomater. 8 (2012) 802-810.
DOI: 10.1016/j.actbio.2011.09.019
Google Scholar
[30]
J.C. Wenke, S.A. Guelcher, Dual delivery of an antibiotic and a growth factor addresses both the microbiological and biological challenges of contaminated bone fractures, Expert Opin. Drug Deliv. 8 (2011) 1555-1569.
DOI: 10.1517/17425247.2011.628655
Google Scholar