Gelatin Coated 45S5 Bioglass®-Derived Scaffolds for Bone Tissue Engineering

Article Preview

Abstract:

Highly porous 45S5 Bioglass® scaffolds were fabricated by the foam replica method and successfully coated with a well attached gelatin layer by dipping and pipetting methods. Depending on macropore size of the scaffold and gelatin concentration, mechanically enhanced scaffolds with improved compressive strength in comparison to uncoated scaffolds could be obtained while preserving the high and interconnected porosity that is required for bone in-growth. Moreover, the scaffolds bioactivity by immersion in simulated body fluid (SBF) was investigated showing that gelatin coating preserves the intrinsic bioactivity of the Bioglass® scaffold. It was also shown that the gelatin layer can be loaded with tetracycline hydrochloride for developing scaffolds with drug delivery capability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-39

Citation:

Online since:

February 2013

Export:

Price:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 5 (1971) 117-141.

DOI: 10.1002/jbm.820050611

Google Scholar

[2] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705-1728.

Google Scholar

[3] L.L. Hench, Genetic design of bioactive glass, J. Eur. Ceram. Soc. 29 (2009) 1257-1265.

Google Scholar

[4] I.D. Xynos, M.V. J Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J. M Polak, Bioglass 45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In vitro: Implications and Applications for Bone Tissue Engineering, Calcif. Tissue Int. 67 (2000).

DOI: 10.1007/s002230001134

Google Scholar

[5] J.Y. Sun, Y.S. Yang, J. Zhong, D.C. Greenspan, The effect of the ionic products of Bioglass® dissolution on human osteoblasts growth cycle in vitro, J. Tissue Eng. Regen. Med. 1 (2007) 281-286.

DOI: 10.1002/term.34

Google Scholar

[6] A.A. Gorustovich, J.A. Roether, A.R. Boccaccini, Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences, Tissue Eng. 16 B (2010) 199-207.

DOI: 10.1089/ten.teb.2009.0416

Google Scholar

[7] S. Oh, N. Oh, M. Appleford, J.L. Ong, Bioceramics for Tissue Engineering Applications-A Review, Am. J. Biochem. Biotechnol. 2 (2006) 49-56.

Google Scholar

[8] A.S. Brydone, D. Meek, S. Maclaine, Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the institution of mechanical engineers, J. Eng. Med. 224 H (2010) 1329–1343.

DOI: 10.1243/09544119jeim770

Google Scholar

[9] C.M. Agrawal, R.B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res. 55 (2001) 141-150.

DOI: 10.1002/1097-4636(200105)55:2<141::aid-jbm1000>3.0.co;2-j

Google Scholar

[10] S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng. 7 (2001) 679-689.

DOI: 10.1089/107632701753337645

Google Scholar

[11] Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials 27 (2006) 2414-2425.

DOI: 10.1016/j.biomaterials.2005.11.025

Google Scholar

[12] D.M. Yunos, O. Bretcanu, A.R. Boccaccini, Polymer-bioceramic composites for tissue engineering scaffolds, J. Mater. Sci. 43 (2008) 4433-4442.

DOI: 10.1007/s10853-008-2552-y

Google Scholar

[13] W. Xia, J. Chang, Bioactive glass scaffold with similar structure and mechanical properties of cancellous bone, J. Biomed. Mater. Res. 95 B (2010) 449-455.

DOI: 10.1002/jbm.b.31736

Google Scholar

[14] M. Mozafari, F. Moztarzadeh, M. Rabiee, M. Azami, S. Maleknia, M. Tahriri, Z. Moztarzadeh, N. Nezafati, Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering, Ceram. Int. 36 (2010).

DOI: 10.1016/j.ceramint.2010.07.010

Google Scholar

[15] S.M. Lien, L.Y. Ko, T.J. Huang, Effect of crosslinking temperature on compression strength of gelatin scaffold for articular cartilage tissue engineering, Mater. Sci. Eng. 30 C (2010) 631-635.

DOI: 10.1016/j.msec.2010.02.019

Google Scholar

[16] M. Dressler, F. Dombrowski, U. Simon, J. Börnstein, V.D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar, M. Neumann, Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics, J. Eur. Ceram. Soc. 31 (2011) 523-529.

DOI: 10.1016/j.jeurceramsoc.2010.11.004

Google Scholar

[17] W.J.E.M. Habraken, J.G.C. Wolke, J.A. Jansen, Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 234-248.

DOI: 10.1016/j.addr.2007.03.011

Google Scholar

[18] H.W. Kim, J. C Knowles, H.E. Kim, Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds, J. Biomed. Mater. Res. 72 A (2005) 136-145.

DOI: 10.1002/jbm.a.30168

Google Scholar

[19] V. Mouriño, A.R. Boccaccini, Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds, J. R. Soc. Interface 7 (2010) 209-227.

DOI: 10.1098/rsif.2009.0379

Google Scholar

[20] A.L. Pataro, C.F. Franco, V.R. Santos, M.E. Cortés, R.D. Sinisterra, Surface effects and desorption of tetracycline supramolecular complex on bovine dentine, Biomaterials 24 (2003) 1075-1080.

DOI: 10.1016/s0142-9612(02)00403-9

Google Scholar

[21] A.L. Pataro, M.F. Oliveira, K.I.R. Teixeira, R.M.M. Turchetti-Maia, M.T.P. Lopes, F.H.L. Wykrota, R.D. Sinisterra, M.E. Cortes, Polymer: Bioceramic composites optimization by tetracycline addition, Int. J. Pharm. 336 (2007) 75-81.

DOI: 10.1016/j.ijpharm.2006.11.038

Google Scholar

[22] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24 (1990) 721-734.

DOI: 10.1002/jbm.820240607

Google Scholar

[23] M. Vallet-Regí, A.M. Romero, C.V. Ragel, R.Z. LeGeros, XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses, J. Biomed. Mater. Res. 44 (1999) 416-421.

DOI: 10.1002/(sici)1097-4636(19990315)44:4<416::aid-jbm7>3.0.co;2-s

Google Scholar

[24] J.R. Jones, P. Sepulveda, L.L. Hench, Dose-dependent behavior of bioactive glass dissolution, J. Biomed. Mater. Res. 58 (2001) 720–726.

DOI: 10.1002/jbm.10053

Google Scholar

[25] M. Erol, A. Özyuğuran, Ö. Özarpat, S. Küçükbayrak, 3D Composite scaffolds using strontium containing bioactive glasses, J. Eur. Ceram. Soc. 32 (2012) 2747-2755.

DOI: 10.1016/j.jeurceramsoc.2012.01.015

Google Scholar

[26] Q.Z. Chen, A.R. Boccaccini, Poly(D, L-lactic acid) coated 45S5 Bioglass (R)-based scaffolds: Processing and characterization, J. Biomed. Mater. Res. 77 A (2006) 445-457.

DOI: 10.1002/jbm.a.30636

Google Scholar

[27] O. Bretcanu, Q.Z. Chen, S.K. Misra, I. Roy, E. Verne, C.V. Brovarone, A.R. Boccaccini, Biodegradable polymer coated 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering, Europ. J. Glass Sci. Technol. 48 A (2007) 227-234.

DOI: 10.1016/j.biomaterials.2005.11.025

Google Scholar

[28] B. Liu, P. Lin, Y. Shen, Y. Dong, Porous bioceramics reinforced by coating gelatin, J. Mater. Sci. Mater. Med. 19 (2008) 1203-1207.

DOI: 10.1007/s10856-007-3216-1

Google Scholar

[29] M. Cicuéndez, I. Izquierdo-Barba, S. Sánchez-Salcedo, M. Vila, M. Vallet-Regí, Biological performance of hydroxyapatite–biopolymer foams: In vitro cell response, Acta Biomater. 8 (2012) 802-810.

DOI: 10.1016/j.actbio.2011.09.019

Google Scholar

[30] J.C. Wenke, S.A. Guelcher, Dual delivery of an antibiotic and a growth factor addresses both the microbiological and biological challenges of contaminated bone fractures, Expert Opin. Drug Deliv. 8 (2011) 1555-1569.

DOI: 10.1517/17425247.2011.628655

Google Scholar