Research Progress of Combined Application of Sol-Gel and Electrochemistry

Article Preview

Abstract:

There were many advantages for functional materials production using Sol-gel method, such as low operating temperature and easy doping. So, it was widely used in materials preparation, such as nano powders, films, functional glass, nanoceramic and modified electrode. The sol-gel modified electrode has extensive application in electrochemical analysis and electrochemical sensors. In addition, the film by electrodeposition can be tightly assembled on electrode substrate and its structure and shape can be easily regulated. So, The two methods are combined to make better use of their respective advantages. Up to now, the film materials using electrochemically induced sol-gel had been used in electrochemistry analysis and functional films preparation. In this paper, it was summarized that the progress of combined application of sol-gel and electrochemistry. Mainly including sol-gel materials, modified electrodes, electrochemical analysis and sensors, and electrochemical induction sol-gel method for the preparation of thin film materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-128

Citation:

Online since:

April 2018

Export:

Price:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Shacham, D. Avnir, D. Mandler, Electrodeposition of Methylated Sol-Gel Films on Conducting Surfaces, Adv. Mater. 11(5) (1999) 384-388.

DOI: 10.1002/(sici)1521-4095(199903)11:5<384::aid-adma384>3.0.co;2-m

Google Scholar

[2] G. Cabello-Carramolino, M.D. Petit-Dominguez, Development of new sol-gel carbon composite electrodes and their application as electrochemical sensors, Microchim. Acta. 164 (3) (2009) 405-410.

DOI: 10.1007/s00604-008-0074-6

Google Scholar

[3] R. Gupta, N.K. Chaudhury, Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects, Biosens. Bioelectron. 22(11) (2007) 2387-2399.

DOI: 10.1016/j.bios.2006.12.025

Google Scholar

[4] A. Walcarius, Electroanalysis with Pure, Chemically Modified, and Sol-Gel-Derived Silica-Based Materials, Electroanal. 13(8-9) (2001) 701-718.

DOI: 10.1002/1521-4109(200105)13:8/9<701::aid-elan701>3.0.co;2-6

Google Scholar

[5] A. Walcarius, A. Kuhn, Ordered porous thin films in electrochemical analysis, TrAC, Trends Anal. Chem. 27(7) (2008) 593-603.

DOI: 10.1016/j.trac.2008.03.011

Google Scholar

[6] A.J. Tchinda, E. Ngameni, A. Walcarius, Thiol-functionalized porous clay heterostructures (PCHs) deposited as thin films on carbon electrode: Towards mercury(II) sensing, Sens. Actuat. B: Chem. 121 (2007) 113-123.

DOI: 10.1016/j.snb.2006.09.005

Google Scholar

[7] L.D Zhu, C.Y. Tian, J.L. Zhai, R.L. Yang, Sol–gel derived carbon nanotubes ceramic composite electrodes for electrochemical sensing, Sens. Actuat. B: Chem. 125 (2007) 254-261.

DOI: 10.1016/j.snb.2007.02.012

Google Scholar

[8] A. Walcarius, C. Despas, J. Bessiere, Selective monitoring of Cu(II) species using a silica modified carbon paste electrode, Anal. Chim. Acta. 385 (1999) 79-89.

DOI: 10.1016/s0003-2670(98)00403-6

Google Scholar

[9] L.D. Li , C.Q. Sun, Z.H. Liu, Fabrication of Chemically-modified Electrode Containing 1:12 Silicotungstic Anions by Sol-gel Technique and Its Electrocatalytic Properties, Acta Scientiarum Naturalium Universitatis Jilinensis. (2) (2000).

Google Scholar

[10] X.J. Chen , M. Zhang, Y. Yang , Y.F. Tu, Nano-scale Sol-gel Film Modified Electrode and Its Electrochemical Catalytic Performance, Chinese J. Anal. Chem. 30(8) (2002) 972-974. (in Chinese).

Google Scholar

[11] C.Q. Yi, Y. Tao, X. Chen, Electrochemical Behaviors of Ru(bpy)32+ Modified Electrode Immobilized in Organic-modified Sol-Gel, Chem. Bull. 68(1) (2005) 54-58. (in Chinese).

Google Scholar

[12] K. Thenmozhi, S.S. Narayanan, Electrochemical sensor for H2O2 based on thionin immobilized 3-aminopropyltrimethoxy silane derived sol–gel thin film electrode, Sens. Actuators, B. 125 (2007) 195-201.

DOI: 10.1016/j.snb.2007.02.006

Google Scholar

[13] I.K. Tonle, E. Ngameni, A. Walcarius, From clay-to organoclay-film modified electrodes: tuning charge selectivity in ion exchange voltammetry, Electrochim. Acta. 49 (2004) 3435-3443.

DOI: 10.1016/j.electacta.2004.03.012

Google Scholar

[14] G. Maduraiveeran, R. Ramaraj, A facile electrochemical sensor designed from gold nanoparticles embedded in three-dimensional sol–gel network for concurrent detection of toxic chemicals, Electrochem. Commun. 9 (2007) 2051-(2055).

DOI: 10.1016/j.elecom.2007.05.021

Google Scholar

[15] B. Deiminiat, I. Razavipanah, G.H. Rounaghi, M.H. Arbab-Zavar, A novel electrochemical imprinted sensor for acetylsalicylic acid based on polypyrrole, sol-gel and SiO2@Au core-shell nanoparticles, Sens. Actuators, B. 244 (2017) 785-795.

DOI: 10.1016/j.snb.2017.01.059

Google Scholar

[16] Z. Wang, K. Wang, L. Zhao, S. Chai, J. Zhang, X. Zhang, Q. Zou, A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine, Mater. Sci. Eng., C. 70 (2017).

DOI: 10.1016/j.msec.2017.03.227

Google Scholar

[17] A.K. Baytak, T. Teker, S. Duzmen, M. Aslanoglu, A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine, Mater. Sci. Eng., C. 59 (2016) 368-374.

DOI: 10.1016/j.msec.2015.10.030

Google Scholar

[18] Y.G. Guo, W. Yan, X.Y. Lou, D.X. Xiao, P. Zhai, Multiwall Carbon Nanotubes-Modified Glassy Carbon Electrode for Square-Wave Stripping Voltammetric Determination of Aqueous Antimony (III) Ion, Adv. Mater. Res. 518-523 (2012) 1571-1575.

DOI: 10.4028/www.scientific.net/amr.518-523.1571

Google Scholar

[19] X. Zou, F. Shang, S. Wang, Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction, Spectrochim. Acta, Part A. 173 (2017) 843-848.

DOI: 10.1016/j.saa.2016.10.037

Google Scholar

[20] G. Shustak, S. Marx, I. Turyan, D. Mandler, Application of Sol-Gel Technology for Electroanalytical Sensing, Electroanal. 15(5-6) (2003) 398-408.

DOI: 10.1002/elan.200390046

Google Scholar

[21] S. Fireman-Shoresh, I. Turyan, D. Mandler, D. Avnir, S. Marx, Chiral electrochemical recognition by very thin molecularly imprinted sol-gel films, Langmuir. 21(17) (2005) 7842-7847.

DOI: 10.1021/la050240y

Google Scholar

[22] S. Marx, A. Zaltsman, I. Turyan, D. Mandler, Parathion sensor based on molecularly imprinted sol-gel films, Anal. Chem. 76(1) (2004) 120-126.

DOI: 10.1021/ac034531s

Google Scholar

[23] S. Bharathi, O. Lev. Sol-Gel-Derived Prussian Blue–Silicate Amperometric Glucose Biosensor, Appl. Biochem. Biotechnol. 89 (2000) 209-216.

DOI: 10.1385/abab:89:2-3:209

Google Scholar

[24] X.C. Tan, R.P. Liang, Y. Li, X.Y. Zou, P.X. Cai, An amperometric hydrogen peroxide biosensor based on chitosan/silica sol-gel composite films incorporating horseradish peroxidase . Chinese J. Anal. Lab. 23(6) (2004) 1-4. (in Chinese).

Google Scholar

[25] J.K. Mbouguen, E. Ngameni, A. Walcarius, Organoclay-enzyme film electrodes, Anal. Chim. Acta. 578 (2006) 145-155.

DOI: 10.1016/j.aca.2006.06.075

Google Scholar

[26] Y.S. Gao, S.H. Peng, C.P. Shen, J.W. Di, Y.F. Tu, Direct Electrochemistry of Superoxide Dismutase Immobilized by Self-assembly and Sol-gel Method, J. Changshu Inst. Technol.(Nat. Sci.). 21(2) (2007) 49-52. (in Chinese).

Google Scholar

[27] R. Shacham, D. Avnir, D. Mandler, Electrodeposition of Methylated Sol-Gel Films on Conducting Surfaces, Adv. Mater. 11(5) (1999) 384-388.

DOI: 10.1002/(sici)1521-4095(199903)11:5<384::aid-adma384>3.0.co;2-m

Google Scholar

[28] R. Shacham, D. Mandler, D. Avnir, Electrochemically Induced Sol-Gel Deposition of Zirconia Thin Films, Chem. Eur. J. (10) (2004) 1936-(1943).

DOI: 10.1002/chem.200305469

Google Scholar

[29] M. Sheffer, A. Groysman, D. Mandler, Electrodeposition of sol–gel films on Al for corrosion protection, Corros. Sci. 45 (2003) 2893-2904.

DOI: 10.1016/s0010-938x(03)00106-9

Google Scholar

[30] M. Sheffer, A. Groysman, D. Starosvetsky, N. Savchenko, D. Mandler, Anion embedded sol–gel films on Al for corrosion protection, Corros. Sci. 46 (2004) 2975-2985.

DOI: 10.1016/j.corsci.2004.05.001

Google Scholar

[31] X. Wang, R. Xiong, G. Wei, Preparation of mesoporous silica thin films on polystyrene substrate by electrochemically induced sol–gel technique, Surf. Coat. Technol. 204 (14) (2010) 2187-2192.

DOI: 10.1016/j.surfcoat.2009.12.003

Google Scholar

[32] W.Z. Jia, K. Wang, Z.J. Zhu, H.T. Song, X.H. Xia, One-step immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process, Langmuir. 23(23) (2007) 11896-11900.

DOI: 10.1021/la7020269

Google Scholar

[33] M.A. Kamyabi, N. Hajari, Preparation of mesoporous silica templated metal nanostructure on Ni foam substrate and its application for the determination of hydrogen peroxide, J. Appl. Electrochem. 46(9) (2016) 951–962.

DOI: 10.1007/s10800-016-0986-5

Google Scholar

[34] S. Sayen, A. Walcarius, Electro-assisted generation of functionalized silica films on gold, Electrochem. Commun. 5(5) (2003) 341-348.

DOI: 10.1016/s1388-2481(03)00065-1

Google Scholar

[35] E. Sibottier, S. Sayen, F. Gaboriaud, A. Walcarius, Factors Affecting the Preparation and Properties of Electrodeposited Silica Thin Films Functionalized with Amine or Thiol Groups, Langmuir. 22(20) (2006) 8366-8373.

DOI: 10.1021/la060984r

Google Scholar

[36] R. Shacham, D. Avnir, D. Mandler, Electrodeposition of Dye-Doped Titania Thin Films, J. Sol-Gel Sci. Technol. 31 (2004) 329-334.

DOI: 10.1023/b:jsst.0000048012.14882.38

Google Scholar

[37] A. Walcarius, E. Sibottier, Electrochemically-Induced Deposition of Amine-Functionalized Silica Films on Gold Electrodes and Application to Cu(II) Detection in (Hydro)Alcoholic Medium, Electroanal. 17(19) (2005) 1716-1726.

DOI: 10.1002/elan.200503300

Google Scholar

[38] E. Gdor, D. Mandler, Electrochemically assisted deposition of biodegradable polymer nanoparticles/sol–gel thin films, J. Mater. Chem. 21 (32) (2011) 12145-12150.

DOI: 10.1039/c1jm11262g

Google Scholar

[39] O. Nadzhafovaa, M. Etienneb, A. Walcariusb, Direct electrochemistry of hemoglobin and glucose oxidase in electrodeposited sol–gel silica thin films on glassy carbon, Electrochem. Commun. 9(5) (2007) 1189-1195.

DOI: 10.1016/j.elecom.2007.01.010

Google Scholar

[40] Q. Li, M. Gu, Preparation of TeOx-SiO2 film with excellent third-order nonlinear optical properties by electrochemically induced sol-gel method, Chin. Chem. Lett. 22(11) (2011) 1359-1362.

DOI: 10.1016/j.cclet.2011.07.003

Google Scholar

[41] Q. Li, M. Gu, Y.G. Du, X.D. Xian, TeO2-SiO2/α-TeO2 Composite Film Prepared by Electrochemical sol-gel Method and Its Non-linear Optical Properties, Acta Chimica. Sinica. 70(5) (2012) 572-578. (in Chinese).

DOI: 10.6023/a1106122

Google Scholar

[42] R. Toledano, R. Shacham, D. Avnir, D. Mandler, Electrochemical Co-deposition of Sol−Gel/Metal Thin Nanocomposite Films, Chem. Mater. 20(13) (2008) 4276-4283.

DOI: 10.1021/cm800002z

Google Scholar

[43] M. Gu, Y.L. Chen, Y.Z. Wu, Preparation and Optical Properties of CuO-SiO2 and Cu2O-SiO2 Films, Chinese J. Inorg. Chem. 33(4) (2017) 576-582. (in Chinese).

Google Scholar

[44] S.L. Qing, P. Gan, Preparation and Characterization of Cd/CdS-SiO2 Composite Film with High Third-order Optical Nonlinearity by Electrochemically Induced Sol-Gel Method, J. Inorg. Mater. 28(6) (2013) 659-664. (in Chinese).

DOI: 10.3724/sp.j.1077.2013.12483

Google Scholar

[45] R. Gutkowski, W. Schuhmann, Electrochemically induced sol-gel deposition of ZnO films on Pt-nanoparticle modified FTO surfaces for enhanced photoelectrocatalytic energy conversion, PCCP. 18 (16) (2016) 10758-10763.

DOI: 10.1039/c5cp07678a

Google Scholar

[46] J.H. Zhou, L.L. Jiang, L.K. Wu, J.M. Hu. Photo-assisted electrodeposition of sol–gel films on p-type semiconductors, Electrochem. Commun. 61 (2015) 40-44.

DOI: 10.1016/j.elecom.2015.10.002

Google Scholar