Ni0.5V0.5Fe2O4 Nanophotocatalyst: Preparation, Characterization and its Activity on Remazol Golden Yellow Degradation under Sunlight Irradiation

Article Preview

Abstract:

Photocatalysis is a promising solution for the degradation of dyes since this substance give a negative impact on the environment. In this study, Ni0.5V0.5Fe2O4 nanophotocatalyst was prepared simultaneously using sol-gel and freeze-drying methods. After the freeze-drying process, the sample was subjected to calcination treatment and subsequently characterized using the techniques of X-ray Diffraction (XRD) and Scherrer calculation method, FTIR, DR spectroscopy, and TEM analysis. The results of XRD characterization indicated that material consists of Ni0.5V0.5Fe2O4 spinel as a major crystalline phase. Then, TEM analysis proved that the grain size of this spinel is in the range of 20 nm. Crystallite size calculation using Scherrer equation proved that the size is 34.06 nm, DRS analysis indicated that bandgap energy of spinel Ni0.5V0.5Fe2O4 is suitably utilized and FTIR spectra analysis implied that the prominent acid sites are Lewis acid. Furthermore, results of dyes photodegradation indicated that Ni0.5V0.5Fe2O4 nanocatalyst is active for remazol golden yellow degradation until 45% conversion under sunlight irradiation for 100 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-78

Citation:

Online since:

April 2020

Export:

Price:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. de Alvarenga, R. A. Fideles, M. V. de Silva, G. F. Murari, J. G. Taylor, L. R.de Lemos, G. D. Rodigues, A. B. Mageste, Partition study of textile dye remazol yellow gold RNL in aqueous two-phase systems, Fluid Phase Equilib. 391 (2015) 1-8.

DOI: 10.1016/j.fluid.2015.01.022

Google Scholar

[2] K. Santhi, P. Manikandan, C. Rani, S. Karuppuchamy, Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye, Appl. Nanosci. 5 (2015) 373-378.

DOI: 10.1007/s13204-014-0327-0

Google Scholar

[3] C. G. Maia, A. S. Oliveira, E. M. Saggioro, J. C. Moreira, Optimiztion of the photocatalytic degradation of commercial azo dyes in aqueuos TiO2 suspensions, Reac. Kinet. Mech. Cat. 113 (2015) 305-320.

DOI: 10.1007/s11144-014-0737-8

Google Scholar

[4] J.K.D. de Souza, A.S.B. Silva, L.C. de Lima, E. Longo, A.G. de Souza, A. da Silva Maia, I. M. G. Santos, NaNbO3 applied in the photodiscoloration of golden yellow remazol, XIV Brazil MRS Meeting-Rio de Janeiro, (2015).

Google Scholar

[5] A.R. Phani, M. Passacantando, S. Santucci, Synthesis and characterization of zinc aluminum oxide thin films by sol-gel technique, Mater. Chem. Phys. 68 (2001) 66-71.

DOI: 10.1016/s0254-0584(00)00270-4

Google Scholar

[6] M. Zawadzki, J. Wrzyszcz, W. Strek, D. Hreniak, Preparation and optical properties of nanocrystalline and nanoporous Tb doped alumina and zinc aluminate, J. Alloys Compd. 323-324 (2001) 279-282.

DOI: 10.1016/s0925-8388(01)01031-3

Google Scholar

[7] C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis, Nat. Commun. 6 (2015) 7345-7352.

DOI: 10.1038/ncomms8345

Google Scholar

[8] C. Baudin, R. Martinez, P. Pena, High-temperature mechanical behavior of stoichiometric magnesium spinel, J. Am. Ceram. Soc. 78 (1995) 1857-1862.

DOI: 10.1111/j.1151-2916.1995.tb08900.x

Google Scholar

[9] T. D. Boyko, A. Hunt, A. Zerr, A. Moewes, Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4, and Sn3N4 with tunable band gaps: application to light emitting diodes, Phys. Rev. Lett. 111 (2013) 0974021-0974025.

Google Scholar

[10] Y. Wang, W. Tang, J. Cheng, M. Behtash, K. Yang, Creating two-dimensional electron gas in polar/polar perovskite oxide heterostructures: first-principles characterization of LaAlO3/A+B5+O3, ACS Appl. Mater. Interfaces 8 (2016) 13659-13668.

DOI: 10.1021/acsami.6b02399

Google Scholar

[11] M. Niyaifar, S. Nazari, H. Mohammadpour, Magnetic and structural studies of Mg1-xZnxFe2O4. Proc. AES-ATEMA 18th Int. Conf., Canada, (2014). 203-212.

Google Scholar

[12] K. M. Kojima, R. Kadono, M. Miyazaki, M. Hiraishi, I. Yamauchi, A. Koda, Y. Tsuchiya, H. S. Suzuki, H. Kitazawa, Magnetic frustration in iridium spinel compound CuIr2O4, Phys. Rev. Lett. 112 (2014) 087203.

DOI: 10.1103/physrevlett.112.087203

Google Scholar

[13] M. Doynov, T. Dimitrov, S. Kozhukharov, Alternative technological approach for synthesis of ceramic pigments by waste materials recycling, Boletín de la Sociedad Española de Cerámica y Vidrio 55 (2016) 63-70.

DOI: 10.1016/j.bsecv.2016.01.002

Google Scholar

[14] Wendusu, T. Yoshida, T. Masui, N. Imanaka. Novel environmentally friendly inorganic red pigments based on calcium bismuth oxides, J. Adv. Ceram. 4 (2015) 39-45.

DOI: 10.1007/s40145-015-0129-1

Google Scholar

[15] X. Li, Z. Zhu, Q. Zhao, L. Wang, Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: A comparative study, J. Hazard. Mater. 186 (2011) 2089-2096.

DOI: 10.1016/j.jhazmat.2010.12.111

Google Scholar

[16] S. Battiston, C. Rigo, E. da Cruz Severo, M. A. Mazutti, R. C. Kuhn, A. Gündel, E. L. Foletto, Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst, Mat. Res. 17 (2015) 734-738.

DOI: 10.1590/s1516-14392014005000073

Google Scholar

[17] D. E. Zhang, X. J. Zhang, X. M. Ni, H. G. Zheng, D. D. Yang, Synthesis and characterization of NiFe2O4 magnetic nanorods via a PEG-assisted route, J. Magn. Magn. Mater. 292 (2005) 79-82.

DOI: 10.1016/j.jmmm.2004.10.097

Google Scholar

[18] K. Sreekumar, S. Sugunan, Ferrospinels based on Co and Ni prepared via a low temperature route as efficient catalysts for the selective synthesis of o-cresol and 2,6-xylenol from phenol and methanol, J. Mol. Catal. A Chem. 185 (2002) 259-268.

DOI: 10.1016/s1381-1169(02)00074-2

Google Scholar

[19] R. Situmeang, S. Wibowo, W. Simanjuntak, R. Supryanto, R. Amalia, M. Septanto, P. Manurung, S. Sembiring, Characteristics of nanosize spinel NixFe3-xO4 prepared by sol–gel method using egg white as emulsifying agent, Indones. J. Chem. 15 (2015) 116-122.

DOI: 10.22146/ijc.21204

Google Scholar

[20] C. R. Vestal, Z. J. Zhang, Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles, J. Am. Chem. Soc. 125 (2003) 9828-9833.

DOI: 10.1021/ja035474n

Google Scholar

[21] J. G. S. Duque, E. A. Souza, C. T. Meneses, L. Kubota, Magnetic properties of NiFe2O4 nanoparticles produced by a new chemical method. Physica B Condens. Matter. 398 (2007) 287-290.

DOI: 10.1016/j.physb.2007.04.030

Google Scholar

[22] P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater. Lett. 65 (2011) 1438-1440.

DOI: 10.1016/j.matlet.2011.02.026

Google Scholar

[23] R. J. Hill, J. R. Craig, G. V. Gibbs, Systematics of the spinel structure type, Phys. Chem. Miner. 4 (1979) 317-339.

Google Scholar

[24] M. A. Ahmed, S. I. El-Dek, I. M. El-Kashef, N. Helmy, Structural and magnetic properties of nano-crystalline Ag+ doped NiFe2O4, Solid State Sci. 13 (2011) 1176-1179.

DOI: 10.1016/j.solidstatesciences.2010.11.002

Google Scholar

[25] M. Srivastava, A. K. Ojha, S. Chaubey A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures, J. Alloys Compd. 481 (2009) 515-519.

DOI: 10.1016/j.jallcom.2009.03.027

Google Scholar

[26] M. S. Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant, Polyhedron 28 (2009) 1455-1458.

DOI: 10.1016/j.poly.2009.03.020

Google Scholar

[27] P. Sivakmar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiFe2O4 nanosheet via polymer assisted co-precipitation method, Mater. Lett. 65 (2011) 483-485.

DOI: 10.1016/j.matlet.2010.10.056

Google Scholar

[28] A. Alarifi, N. M. Deraz, S. Shaban, Structural, morphological and magnetic properties of NiFe2O4 nano-particles, J. Alloys Compd. 486 (2009) 501-506.

DOI: 10.1016/j.jallcom.2009.06.192

Google Scholar

[29] H. Li, H. Z. Wu, G. X. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4, Powder Technol. 198 (2010) 157-166.

DOI: 10.1016/j.powtec.2009.11.005

Google Scholar

[30] N. A. El-Shafi, M. M. Morsi, Optical absorption and infrared studies of some silicate glasses containing titanium, J. Mater. Sci. 32 (1997) 5185-5189.

Google Scholar

[31] S. Klosek, D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, J. Phys. Chem. B 105 (2001) 2815-2819.

DOI: 10.1021/jp004295e

Google Scholar

[32] V. Shanmugam, S. Sanjeevamuthu, K. S. Jeyaperumal, R. Vairamuthu, Fabrication of heterostructured vanadium modified g-C3N4/TiO2 hybrid performance under visible light exposure and antibacterial activities, J. Ind. Eng. Chem. 76 (2019) 318-332.

DOI: 10.1016/j.jiec.2019.03.056

Google Scholar

[33] K. S. Por, O. Y. Khai, S. L. Lee, Vanadium oxides doped poroustitania photocatalyst for phenol photodegradation, Malaysian Journal of Fundamental and Applied Sciences 1 (2016) 1-86.

Google Scholar

[34] B. D. Cullity, Elements of X-ray Diffraction, second ed., Addison-Wesley Publishing Company Inc., Phillipines, (1978).

Google Scholar

[35] E. P. Parry, An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity, J. Catal. 2 (1963) 371-379.

DOI: 10.1016/0021-9517(63)90102-7

Google Scholar

[36] J. Ryczkowski, IR spectroscopy in catalysis, Catal. Today 68 (2001) 263-381.

DOI: 10.1016/s0920-5861(01)00334-0

Google Scholar

[37] D. V. Sridhara Rao, K. Muraleedharan, C. J. Humphreys, in A. Méndez-Vilas, J. Díaz (Eds.), Microscopy: Science, Technology, Applications and Education, Formatex, Spain, (2010).

Google Scholar

[38] N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Opt. Mater. 64 (2017) 18-25.

DOI: 10.1016/j.optmat.2016.11.014

Google Scholar

[39] K. Tanabe, M. Misoono, H. Hattori, Y. Ono, New solid acids and bases, their catalytic properties, Kodansha Ltd., Tokyo-Japan, Academic Press, New York-London, (1990).

Google Scholar

[40] M. Yurdakoç, M. Akçay, Y. Tonbul, K. Yurdakoç, Acidity of silica-alumina catalysts by amine titration using Hammett indicators and FT-IR study of pyridine adsorption. Turk. J. Chem. 23 (1999) 319-327.

Google Scholar

[41] L. D. Hanke, Handbook of Analytical Method for Materials, Material Evaluation and Engineering Inc. Plymouth, America, (2001).

Google Scholar

[42] N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson, Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials, Opt. Mater. 64 (2017) 18-25.

DOI: 10.1016/j.optmat.2016.11.014

Google Scholar

[43] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B 15 (1966) 627-637.

DOI: 10.1002/pssb.19660150224

Google Scholar