[1]
J. M. de Alvarenga, R. A. Fideles, M. V. de Silva, G. F. Murari, J. G. Taylor, L. R.de Lemos, G. D. Rodigues, A. B. Mageste, Partition study of textile dye remazol yellow gold RNL in aqueous two-phase systems, Fluid Phase Equilib. 391 (2015) 1-8.
DOI: 10.1016/j.fluid.2015.01.022
Google Scholar
[2]
K. Santhi, P. Manikandan, C. Rani, S. Karuppuchamy, Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye, Appl. Nanosci. 5 (2015) 373-378.
DOI: 10.1007/s13204-014-0327-0
Google Scholar
[3]
C. G. Maia, A. S. Oliveira, E. M. Saggioro, J. C. Moreira, Optimiztion of the photocatalytic degradation of commercial azo dyes in aqueuos TiO2 suspensions, Reac. Kinet. Mech. Cat. 113 (2015) 305-320.
DOI: 10.1007/s11144-014-0737-8
Google Scholar
[4]
J.K.D. de Souza, A.S.B. Silva, L.C. de Lima, E. Longo, A.G. de Souza, A. da Silva Maia, I. M. G. Santos, NaNbO3 applied in the photodiscoloration of golden yellow remazol, XIV Brazil MRS Meeting-Rio de Janeiro, (2015).
Google Scholar
[5]
A.R. Phani, M. Passacantando, S. Santucci, Synthesis and characterization of zinc aluminum oxide thin films by sol-gel technique, Mater. Chem. Phys. 68 (2001) 66-71.
DOI: 10.1016/s0254-0584(00)00270-4
Google Scholar
[6]
M. Zawadzki, J. Wrzyszcz, W. Strek, D. Hreniak, Preparation and optical properties of nanocrystalline and nanoporous Tb doped alumina and zinc aluminate, J. Alloys Compd. 323-324 (2001) 279-282.
DOI: 10.1016/s0925-8388(01)01031-3
Google Scholar
[7]
C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis, Nat. Commun. 6 (2015) 7345-7352.
DOI: 10.1038/ncomms8345
Google Scholar
[8]
C. Baudin, R. Martinez, P. Pena, High-temperature mechanical behavior of stoichiometric magnesium spinel, J. Am. Ceram. Soc. 78 (1995) 1857-1862.
DOI: 10.1111/j.1151-2916.1995.tb08900.x
Google Scholar
[9]
T. D. Boyko, A. Hunt, A. Zerr, A. Moewes, Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4, and Sn3N4 with tunable band gaps: application to light emitting diodes, Phys. Rev. Lett. 111 (2013) 0974021-0974025.
Google Scholar
[10]
Y. Wang, W. Tang, J. Cheng, M. Behtash, K. Yang, Creating two-dimensional electron gas in polar/polar perovskite oxide heterostructures: first-principles characterization of LaAlO3/A+B5+O3, ACS Appl. Mater. Interfaces 8 (2016) 13659-13668.
DOI: 10.1021/acsami.6b02399
Google Scholar
[11]
M. Niyaifar, S. Nazari, H. Mohammadpour, Magnetic and structural studies of Mg1-xZnxFe2O4. Proc. AES-ATEMA 18th Int. Conf., Canada, (2014). 203-212.
Google Scholar
[12]
K. M. Kojima, R. Kadono, M. Miyazaki, M. Hiraishi, I. Yamauchi, A. Koda, Y. Tsuchiya, H. S. Suzuki, H. Kitazawa, Magnetic frustration in iridium spinel compound CuIr2O4, Phys. Rev. Lett. 112 (2014) 087203.
DOI: 10.1103/physrevlett.112.087203
Google Scholar
[13]
M. Doynov, T. Dimitrov, S. Kozhukharov, Alternative technological approach for synthesis of ceramic pigments by waste materials recycling, Boletín de la Sociedad Española de Cerámica y Vidrio 55 (2016) 63-70.
DOI: 10.1016/j.bsecv.2016.01.002
Google Scholar
[14]
Wendusu, T. Yoshida, T. Masui, N. Imanaka. Novel environmentally friendly inorganic red pigments based on calcium bismuth oxides, J. Adv. Ceram. 4 (2015) 39-45.
DOI: 10.1007/s40145-015-0129-1
Google Scholar
[15]
X. Li, Z. Zhu, Q. Zhao, L. Wang, Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: A comparative study, J. Hazard. Mater. 186 (2011) 2089-2096.
DOI: 10.1016/j.jhazmat.2010.12.111
Google Scholar
[16]
S. Battiston, C. Rigo, E. da Cruz Severo, M. A. Mazutti, R. C. Kuhn, A. Gündel, E. L. Foletto, Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst, Mat. Res. 17 (2015) 734-738.
DOI: 10.1590/s1516-14392014005000073
Google Scholar
[17]
D. E. Zhang, X. J. Zhang, X. M. Ni, H. G. Zheng, D. D. Yang, Synthesis and characterization of NiFe2O4 magnetic nanorods via a PEG-assisted route, J. Magn. Magn. Mater. 292 (2005) 79-82.
DOI: 10.1016/j.jmmm.2004.10.097
Google Scholar
[18]
K. Sreekumar, S. Sugunan, Ferrospinels based on Co and Ni prepared via a low temperature route as efficient catalysts for the selective synthesis of o-cresol and 2,6-xylenol from phenol and methanol, J. Mol. Catal. A Chem. 185 (2002) 259-268.
DOI: 10.1016/s1381-1169(02)00074-2
Google Scholar
[19]
R. Situmeang, S. Wibowo, W. Simanjuntak, R. Supryanto, R. Amalia, M. Septanto, P. Manurung, S. Sembiring, Characteristics of nanosize spinel NixFe3-xO4 prepared by sol–gel method using egg white as emulsifying agent, Indones. J. Chem. 15 (2015) 116-122.
DOI: 10.22146/ijc.21204
Google Scholar
[20]
C. R. Vestal, Z. J. Zhang, Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles, J. Am. Chem. Soc. 125 (2003) 9828-9833.
DOI: 10.1021/ja035474n
Google Scholar
[21]
J. G. S. Duque, E. A. Souza, C. T. Meneses, L. Kubota, Magnetic properties of NiFe2O4 nanoparticles produced by a new chemical method. Physica B Condens. Matter. 398 (2007) 287-290.
DOI: 10.1016/j.physb.2007.04.030
Google Scholar
[22]
P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater. Lett. 65 (2011) 1438-1440.
DOI: 10.1016/j.matlet.2011.02.026
Google Scholar
[23]
R. J. Hill, J. R. Craig, G. V. Gibbs, Systematics of the spinel structure type, Phys. Chem. Miner. 4 (1979) 317-339.
Google Scholar
[24]
M. A. Ahmed, S. I. El-Dek, I. M. El-Kashef, N. Helmy, Structural and magnetic properties of nano-crystalline Ag+ doped NiFe2O4, Solid State Sci. 13 (2011) 1176-1179.
DOI: 10.1016/j.solidstatesciences.2010.11.002
Google Scholar
[25]
M. Srivastava, A. K. Ojha, S. Chaubey A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures, J. Alloys Compd. 481 (2009) 515-519.
DOI: 10.1016/j.jallcom.2009.03.027
Google Scholar
[26]
M. S. Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant, Polyhedron 28 (2009) 1455-1458.
DOI: 10.1016/j.poly.2009.03.020
Google Scholar
[27]
P. Sivakmar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiFe2O4 nanosheet via polymer assisted co-precipitation method, Mater. Lett. 65 (2011) 483-485.
DOI: 10.1016/j.matlet.2010.10.056
Google Scholar
[28]
A. Alarifi, N. M. Deraz, S. Shaban, Structural, morphological and magnetic properties of NiFe2O4 nano-particles, J. Alloys Compd. 486 (2009) 501-506.
DOI: 10.1016/j.jallcom.2009.06.192
Google Scholar
[29]
H. Li, H. Z. Wu, G. X. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4, Powder Technol. 198 (2010) 157-166.
DOI: 10.1016/j.powtec.2009.11.005
Google Scholar
[30]
N. A. El-Shafi, M. M. Morsi, Optical absorption and infrared studies of some silicate glasses containing titanium, J. Mater. Sci. 32 (1997) 5185-5189.
Google Scholar
[31]
S. Klosek, D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, J. Phys. Chem. B 105 (2001) 2815-2819.
DOI: 10.1021/jp004295e
Google Scholar
[32]
V. Shanmugam, S. Sanjeevamuthu, K. S. Jeyaperumal, R. Vairamuthu, Fabrication of heterostructured vanadium modified g-C3N4/TiO2 hybrid performance under visible light exposure and antibacterial activities, J. Ind. Eng. Chem. 76 (2019) 318-332.
DOI: 10.1016/j.jiec.2019.03.056
Google Scholar
[33]
K. S. Por, O. Y. Khai, S. L. Lee, Vanadium oxides doped poroustitania photocatalyst for phenol photodegradation, Malaysian Journal of Fundamental and Applied Sciences 1 (2016) 1-86.
Google Scholar
[34]
B. D. Cullity, Elements of X-ray Diffraction, second ed., Addison-Wesley Publishing Company Inc., Phillipines, (1978).
Google Scholar
[35]
E. P. Parry, An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity, J. Catal. 2 (1963) 371-379.
DOI: 10.1016/0021-9517(63)90102-7
Google Scholar
[36]
J. Ryczkowski, IR spectroscopy in catalysis, Catal. Today 68 (2001) 263-381.
DOI: 10.1016/s0920-5861(01)00334-0
Google Scholar
[37]
D. V. Sridhara Rao, K. Muraleedharan, C. J. Humphreys, in A. Méndez-Vilas, J. Díaz (Eds.), Microscopy: Science, Technology, Applications and Education, Formatex, Spain, (2010).
Google Scholar
[38]
N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Opt. Mater. 64 (2017) 18-25.
DOI: 10.1016/j.optmat.2016.11.014
Google Scholar
[39]
K. Tanabe, M. Misoono, H. Hattori, Y. Ono, New solid acids and bases, their catalytic properties, Kodansha Ltd., Tokyo-Japan, Academic Press, New York-London, (1990).
Google Scholar
[40]
M. Yurdakoç, M. Akçay, Y. Tonbul, K. Yurdakoç, Acidity of silica-alumina catalysts by amine titration using Hammett indicators and FT-IR study of pyridine adsorption. Turk. J. Chem. 23 (1999) 319-327.
Google Scholar
[41]
L. D. Hanke, Handbook of Analytical Method for Materials, Material Evaluation and Engineering Inc. Plymouth, America, (2001).
Google Scholar
[42]
N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson, Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials, Opt. Mater. 64 (2017) 18-25.
DOI: 10.1016/j.optmat.2016.11.014
Google Scholar
[43]
J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B 15 (1966) 627-637.
DOI: 10.1002/pssb.19660150224
Google Scholar