Structural, Thermal and Magnetic Properties of Ga Excess Ni-Mn-Ga

Article Preview

Abstract:

The martensitic transition and the ferro- to paramagnetic transition have been studied in a series of Ga excess Ni-Mn-Ga specimens [Ni2-xMnGa1+x (0.4≤ x≤ 0.9)] by differential scanning calorimetry and magnetization measurements. The martensitic transition exhibits a hysteresis whose width is similar to Ni2MnGa, indicating that the transition is thermoelastic. The latent heat of transformation is comparable with other Ni-Mn-Ga alloys. A substantial increase in the martensitic transition temperature is observed due to Ga doping. Interestingly, the x-ray diffraction pattern of all the compositions studied show a modulated martensitic structure in the martensitic phase.

You have full access to the following eBook

Info:

Periodical:

Pages:

43-47

Citation:

Online since:

December 2009

Export:

[1] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).

Google Scholar

[2] S. J. Murray, M. Marioni, S. M. Allen, R. C. O'Handley, T. A. Lograsso, Appl. Phys. Lett. 77, 886 (2000).

Google Scholar

[3] A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002).

Google Scholar

[4] A. N. Vasilev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi and J. Tani, Phys. Rev. B 59, 1113 (1999).

Google Scholar

[5] S. Banik, A. Chakrabarti, U. Kumar, P. K. Mukhopadhyay, A. M. Awasthi, R. Ranjan, J. Schneider, B. L. Ahuja, and S. R. Barman, Phys. Rev. B 74, 085110 (2006).

Google Scholar

[6] G. D. Liu, J. L. Chen, Z. H. Liu, X. F. Dai, G. H. Wu, B. Zhang, X. X. Zhang, Appl. Phys. Lett. 87, 262504 (2005).

Google Scholar

[7] T. Kakeshita, T. Takeuchi, T. Saburi, R. Oshima, S. Muto, Appl. Phys. Lett. 77, 1502 (2000).

Google Scholar

[8] T. Sakamoto, T. Fukuda, and T. Kakeshita, T. Takeuchi, K. Kishio, J. Appl. Phys. 93, 8647 (2003).

Google Scholar

[9] K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, and K. Ishida, Appl. Phys. Lett. 79, 3290 (2001).

DOI: 10.1063/1.1418259

Google Scholar

[10] H. B. Wang, F. Chen, Z. Y. Gao, W. Cai, L. C. Zhao, Mat. Sci. Eng. A 438, 990 (2006).

Google Scholar

[11] K. Koho, O. Soderberg, N. Lanska, Y. Ge, X. Liu, L. Straka, J. Vimpari, O. Heczko, V. K. Lindroos, Mat. Sci. Eng. A 378, 384 (2004).

DOI: 10.1016/j.msea.2003.10.363

Google Scholar

[12] A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, and K. Ishida, Appl. Phys. Lett. 77, 3054 (2000).

Google Scholar

[13] T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Phys. Rev. B 73, 174413 (2006).

Google Scholar

[14] S. R. Barman, A. Chakrabarti, S. Singh, S. Banik, S. Bhardwaj, P. L. Paulose, B. A. Chalke, A. K. Panda, A. Mitra, and A. M. Awasthi, Phys. Rev. B 78, 134406 (2008).

Google Scholar

[15] S. Banik, R. Ranjan, A. Chakrabarti, S. Bhardwaj, N. P. Lalla, A. M. Awasthi, V. Sathe, D. M. Phase, P. K. Mukhopadhyay, D. Pandey, and S. R. Barman Phys. Rev. B 75, 104107 (2007).

Google Scholar

[16] A. Le Bail, H. Duroy, and J. L. Fourquet, Mater. Res. Bull. 23, 447 (1988).

Google Scholar

[17] Y. Ge, A. Sozinov, O. Soderberg, N. Lanska, K. Ullakko and V. K. Lindroos, Journal de Physique IV 112, 921 (2003).

DOI: 10.1051/jp4:20031031

Google Scholar

[18] L. Righi, F. Albertini, L. Pareti, A. Paoluzi, G. Calestani, Acta. Mater. 55, 5237 (2007).

DOI: 10.1016/j.actamat.2007.05.040

Google Scholar

[19] J. Pons, V. A. Chernenko, R. Santamarta, and E. Cesari, Acta Mater. 48, 3027 (2000).

Google Scholar

[20] R. Ranjan, S. Banik, S. R. Barman, U. Kumar, P. K. Mukhopadhyay, and D. Pandey, Phys. Rev. B 74, 224443 (2006).

Google Scholar

[21] A. A. Likhachev, A. Sozinov and K. Ullakko, Mater. Sci. Eng., A 378, 513 (2004).

Google Scholar

[22] R. Kainuma, F. Gejima, Y. Suoto, I. Ohnuma and K. Ishuda, Mater. Trans., JIM 41, 943 (2000).

Google Scholar