Quantitative Characterization of Microstructure in Copper Processed by Equal-Channel Angular Pressing

Article Preview

Abstract:

Experiments were conducted on extremely coarse-grained pure copper to evaluate the effect of equal-channel angular pressing (ECAP) on microstructure evolution in the as-pressed state and after creep exposure using various stereological methods. The microstructure formed by severe plastic deformation is an unusual structure which can be hardly characterized only by the mean grain size especially after low number of ECAP passes. The purpose of this paper is a detailed examination of (sub)boundaries and grain boundaries in the microstructures of the pressed material. The inhomogeneity of deformed microstructures is also evaluated. The detailed description of ECAP microstructures should contribute to the better understanding of mechanical properties of the pressed materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

235-240

Citation:

Online since:

December 2010

Export:

Price:

[1] H. Miyamoto, J. Fishimi, T. Mimaki, A. Vinogradov and S. Hashimoto: Mater. Sci. Eng. A Vol. 405 (2005), p.221.

Google Scholar

[2] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater. Vol. 45 (1997), p.4733.

Google Scholar

[3] R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci. Vol. 51 (2006), p.891.

Google Scholar

[4] L. Ilucová, P. Král, M. Svoboda, I. Saxl and V. Sklenička: Proceedings of the 25th Riso International Symposium on Material Science: Evolution of Deformation Microstructures on 3D, edited C. Gundlach et al, Denmark 2004, p.363.

Google Scholar

[5] J. Dvořák, V. Sklenička, P. Král, M. Svoboda and I. Saxl: Rev. Adv. Mater. Sci. Vol. 25 (2010), p.225.

Google Scholar

[6] M. Hafok, A. Vorhauer, J. Keckes and R. Pippan, Mater. Sci. Forum 503-504 (2006), p.621.

DOI: 10.4028/www.scientific.net/msf.503-504.621

Google Scholar

[7] ASTM E-112. Standard methods for determining average grain size., ASTM 1982 (the last version is ASTM E-112 96(2004)e2).

Google Scholar

[8] V. Sklenička, P. Král, L. Ilucová, I. Saxl, J. Dvořák and M. Svoboda: Mater. Sci. Forum Vol. 503-504 (2006), p.245.

DOI: 10.4028/www.scientific.net/msf.503-504.245

Google Scholar

[9] L. Ilucová, I. Saxl, M. Svoboda, V. Sklenička and P. Král: Image Analysis and Stereology 26 (2007), p.37.

DOI: 10.5566/ias.v26.p37-43

Google Scholar

[10] I. Saxl and V. Sklenička: Mater. Sci. Forum Vol. 604-605 (2009), p.403.

Google Scholar

[11] I. Saxl, V. Sklenička, L. Ilucová, M. Svoboda, J. Dvořák and P. Král: Mater. Sci. Eng. A 503 (2009), p.82.

DOI: 10.4028/www.scientific.net/msf.503-504.245

Google Scholar

[12] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[13] I. Saxl, V. Sklenička, I. Ilucová, M. Svoboda and P. Král: Mater. Sci. Forum Vol. 561-565 (2007), p.813.

DOI: 10.4028/www.scientific.net/msf.561-565.813

Google Scholar

[14] I. Saxl, P. Ponížil: Materials Characterization Vol. 46 (2001), p.113.

Google Scholar