Mechanical Properties of Al-6061 and an Al-6061 Metal Matrix Composite Processed by High-Pressure Torsion

Article Preview

Abstract:

It is now well established that the application of high-pressure torsion (HPT) leads to exceptionally small grain sizes in bulk solids, usually in the nanometer scale. The HPT method thus attracts considerable attention and has been utilized in processing many materials such as pure metals, alloys and even ceramics. This paper describes experiments conducted on samples of an Al-6061 alloy and an Al-6061 metal matrix composite, reinforced with 20 vol.% Al2O3 particulates, in order to evaluate the mechanical properties of the alloy and its composite processed by HPT. The tensile properties of the materials were obtained both at room temperature and at 773 K and representative microstructures were observed using transmission electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

689-694

Citation:

Online since:

December 2010

Export:

Price:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci. Vol. 53 (2008), p.893.

Google Scholar

[3] C. Xu, Z. Horita and T.G. Langdon: Acta Mater. Vol. 55 (2007), p.203.

Google Scholar

[4] C. Xu, Z. Horita and T.G. Langdon: Acta Mater. Vol. 56 (2008), p.5168.

Google Scholar

[5] L. Balogh, T. Ungár, Y. Zhao, Y.T. Zhu, Z. Horita, C. Xu and T.G. Langdon: Acta Mater. Vol. 56 (2008), p.809.

Google Scholar

[6] C. Xu, S.V. Dobatkin, Z. Horita and T.G. Langdon: Mater. Sci. Eng. A500 (2009) 170-175.

Google Scholar

[7] R.Z. Valiev, R.K. Islamgaliev, N.F. Kuzmina, Y. Li and T.G. Langdon: Scripta Mater. Vol. 40 (1999), p.117.

Google Scholar

[8] Y. Li and T.G. Langdon: J. Mater. Sci. Vol. 35 (2000), p.1201.

Google Scholar

[9] Y. Huang, C. Xu, S. Lee, M. Furukawa, Z. Horita and T.G. Langdon, in: Ultrafine Grained Materials III, edited by Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran and T.C. Lowe, p.173. The Minerals, Metals and Materials Society, Warrendale, PA (2002).

DOI: 10.1002/9781118804537

Google Scholar

[10] Y. Huang, C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, in: Hot Deformation of Aluminum Alloys III, edited by Z. Jin, A. Bedaudoin, T.R. Biehler and B. Radhakrishnan, p.357. The Minerals, Metals and Materials Society, Warrendale, PA (2003).

Google Scholar

[11] M. Kawasaki, Y. Huang, C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, in: Ultrafine Grained Materials III, edited by Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin and T.C. Lowe, p.25. The Minerals, Metals and Materials Society, Warrendale, PA (2004).

Google Scholar

[12] G.M. Stoica, P.K. Liaw, L.J. Chen, C. Xu, T.G. Langdon, D.E. Fielden, Z. Buczko and R.A. Buchanan, in: Ultrafine Grained Materials III, edited by Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin and T.C. Lowe, p.503. The Minerals, Metals and Materials Society, Warrendale, PA (2004).

Google Scholar

[13] M. Kawasaki, Y. Huang, C. Xu, M. Furukawa, Z. Horita and T.G. Langdon: Mater. Sci. Eng. Vol. A410-411 (2005), p.402.

Google Scholar

[14] B.Q. Han and T.G. Langdon: Mater. Sci. Eng. Vol. A410-411 (2005), p.430.

Google Scholar

[15] L.J. Chen, C.Y. Ma, G.M. Stoica, P.K. Liaw, C. Xu and T.G. Langdon: Mater. Sci. Eng. Vol. A410-411 (2005), p.472.

Google Scholar

[16] G. Sakai, Z. Horita and T.G. Langdon: Mater. Sci. Eng. Vol. A393 (2005), p.344.

Google Scholar

[17] C. Xu, Z. Horita and T.G. Langdon: Mater. Trans. Vol. 51 (2010), p.2.

Google Scholar

[18] R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon and T.G. Langdon: Scripta Mater. Vol. 37 (1997), p. (1945).

DOI: 10.1016/s1359-6462(97)00387-4

Google Scholar

[19] M. Kawasaki and T.G. Langdon: J. Mater. Sci. Vol. 42 (2007), p.1782.

Google Scholar