Molecular Imprinting: Mimicking Molecular Receptors for Antioxidants

Article Preview

Abstract:

Molecularly imprinted polymers (MIPs) have been demonstrated to be a promising class of biomimetic materials that can be tailored to meet specific end use recognition requirements. Molecular imprinting is achieved by the interaction, either covalent or non-covalent between complementary groups in a template molecule and functional monomer units through polymerization. MIPs have been widely employed for divers applications such as chiral separation, chemical sensing, catalysis, drug screening, chromatographic separations and solid phase extraction. During respiration and metabolism, human body produce free radicals as by products, which can damage genetic material, lipids and proteins leading to several fatal diseases such as Cancer, Cardio-vascular disease, Alzheimer’s disease, Immune dysfunction etc. Antioxidants define a family of natural or synthetic nutrients in food, which acts as free radical scavengers. They are present in complex matrix such as herbs, fruit pulp in small concentration, either combined or in free form. Although several techniques have been developed for their detection, (e.g. HPLC, Thin layer chromatography, Capillary gas chromatography, Supercritical fluid chromatography), to achieve highly specific and sensitive analysis, high affinity, stable and specific recognition agents are needed. In this review, special attention is paid to the MIPs based analytical methods for antioxidants, focusing on solid phase extraction, chromatographic and non chromatographic separations and sensing approaches as well as on novel approaches for the discovery of new imprinted materials for antioxidants.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

515-520

Citation:

Online since:

February 2011

Export:

Price:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Knekt, Antioxidant food supplements in human health, (Helsinki, Finland, 2004).

Google Scholar

[2] R. Moss, Antioxidants against cancer, (Equinox press, New York, 2000).

Google Scholar

[3] O. Bruggemann, A. Visnjevski, R. Burch, P. Patel: Anal. Chim. Acta, Vol. 504 (2004), p.81–88.

Google Scholar

[4] F. Puoci, G. Cirillo, M. Curcio, F. Iemma, U.G. Spizzirri, N. Picci: Anal. Chim. Acta, Vol. 593 (2007), page 164–170.

DOI: 10.1016/j.aca.2007.04.053

Google Scholar

[5] A. Fernandez-Gonzalez: Trends Anal. Chem, Vol. 25 (2006), p.10.

Google Scholar

[6] I. Sanchez-Barragan: Senrs. act. B, Vol. 123 (2007), p.798–804.

Google Scholar

[7] M. Naczk, F. Shahidi: J. Chromatogr. A. 1054 (2004), pp.95-111.

Google Scholar

[8] M. Vaher, K. Matso, T. Levandi, K. Helmja, M. Kaljurand: Procedia Chem. 2, Vol. 76–82(2010).

DOI: 10.1016/j.proche.2009.12.013

Google Scholar

[9] K. Dhalwal, V. Shinde, Y. Biradar, K. Mahadik: J. Food Comp. Anal Vol. 21 ( 2008), pp.496-500.

Google Scholar

[10] Q. Hu, B. Pan, J. Xu, J. Sheng, Y. Shi:J. Food Eng, Vol. 80 (2007) p.997–1001.

Google Scholar

[11] P. Mayachiew, S. Devahastin : LWT, Vol. 41 (2008), p.1153–1159.

Google Scholar

[12] Y. Zuo, H. Chen, Y. Deng: Talanta, Vol. 57 (2002), pp.307-316.

Google Scholar

[13] R. Chirinos, H. Rogez, D. Campos, R. Pedreschi, Y. Larondelle: Sepr Purification Technology, Vol. 55 (2007), p.217–225.

DOI: 10.1016/j.seppur.2006.12.005

Google Scholar

[14] G. Spigno, L. Tramelli, D. Faveri: J. Food Eng, Vol. 81 (2007), p.200–208.

Google Scholar

[15] C. Proestos, M. Komaitis : LWT Vol. 41 (2008), p.652–659.

Google Scholar

[16] W. Huang, Z. Li, H. Niu, DLi, J. Zhang: J. Food Eng Vol. 89 (2008), p.298–302.

Google Scholar

[17] G. Spigno, D. De Faveri: J. Food Eng Vol. 78 (2007), p.793–801.

Google Scholar

[18] D. Stevenson : Trends Anal. Chem Vol. 25 (2006), p.2.

Google Scholar

[19] E. Pena, J. Urraca, M. Bondi: J. Pharm. Biomed. Anal Vol. 49 (2009), p.289–294.

Google Scholar

[20] 24 H. Yang, W. Zhou , X. Guo, F. Chen, H Zhao, L Lin, X. Wang: Talanta Vol. 80 (2009), p.821–825.

Google Scholar

[21] D. Wistuba : J. Chromatogr. A, Vol. 1217 (2010), p.941–952.

Google Scholar

[22] T. Sergeyeva, O. Brovko, E. Piletska, S. Piletsky , L. Goncharova,L. Karabanov, L. Sergeyeva, A. Elskaya : Anal. Chim. Acta, Vol. 582 (2007), p.311–319.

DOI: 10.1016/j.aca.2006.09.011

Google Scholar

[23] J. Xu, X. Li, F. Sun: Acta Biomater Vol. 6 (2010), p.486–493.

Google Scholar

[24] C. Hsu, M. Yang: Sensr and Actu. B Vol. 134 (2008), p.680–686.

Google Scholar

[25] L. Ding, H. Li, F. Tang, S. Yao: Anal Letters Vol. 39(2006), pp.2373-2385.

Google Scholar

[26] J. O'Mahony, A. Molinelli, K. Nolan, M.R. Smytha, B. Mizaikoff, Biosens. Bioelectron Vol. 20 (2005), p.1884–1893.

Google Scholar

[27] X. Song, J. Li , J Wang, L. Chen: Talanta, Vol. 80 (2009), p.694–702.

Google Scholar

[28] F. Yanez, I. Chianella, S. Piletsky, A. Concheiro, C. Lorenzo: Anal. Chim. Acta, Vol. 659 (2010), p.178–185.

Google Scholar

[29] T. Alizadeha, M. Zareb, M. Ganjali, P. Norouzi, B. Tavana: Biosens. Bioelectron Vol. 25 (2010), p.1166–1172.

Google Scholar

[30] B. Prasad, S. Srivastava, K. Tiwari, P.S. Sharma: Mater. Sci Eng C Vol. 29 (2009), pp.1082-1087.

Google Scholar

[31] A. Kumar, S. Pardeshi, R. Dhodapkar: International Conference on Nanobiomaterials for Environmental Applications, December 07-08, (2009).

Google Scholar