Modeling Internal Oxidation of Binary Ni Alloys

Article Preview

Abstract:

A numerical model is presented to simulate the diffusional transport of oxygen and that of an alloying element, within a 1-D binary Ni alloy, leading to the selective oxidation of the alloying element and the formation of an internal oxide precipitate. This specific model is written in MATLAB and, with the aid of the Matlab Toolbox, is coupled to the ThermoCalc extensive database. A reaction time is introduced to overcome problems related to the difficulty of formation of the internal oxide. Two cases are considered: Al as the alloying element for which the solubility product of the oxide forming elements is small, and Mn for which it is large.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-87

Citation:

Online since:

September 2011

Export:

Price:

[1] C.T. Liu & H. Inouye: Met. Mat. Trans. B Vol. 5 (1974). p.2515.

Google Scholar

[2] Y. Suzuki & K. Kyono: J. Surf. Fin. Soc. Jpn Vol. 55 (2003), p.48.

Google Scholar

[3] M.A.A. Motin, J. Zhang, P.R. Munroe & D.J. Young: Corr. Sci. Vol. 52 (2010), p.3280.

Google Scholar

[4] D.J. Young: High Temperature Oxidation and Corrosion of Metals (Elsevier Science, 2008).

Google Scholar

[5] P. Kofstad: High Temperature Corrosion, (Elsevier Applied Science, New York 1988).

Google Scholar

[6] J.A. Nesbitt: Oxid. Met. Vol. 44 (1995), p.309.

Google Scholar

[7] D.P. Whittle, D.J. Evans, D.B. Scully & G.C. Wood: Act. Metal. Vol. 15 (1967), p.1421.

Google Scholar

[8] C. Wagner: Zeits. Elekt. Vol 63 (1959), p.772.

Google Scholar

[9] D. Huin, P. Flauder & J. -B. Leblond: Oxid. Metals. Vol. 64 (2005), p.131.

Google Scholar

[10] F. Gesmundo & M. Pereira: Oxid. Metals. Vol. 47 (1997), p.507.

Google Scholar

[11] R.A. Rapp: Corrosion Vol. 21 (1965), p.382.

Google Scholar

[12] F. Gesmundo: Mater. Sci. Forum Vol. 251-254 (1997), p.3.

Google Scholar

[13] E. Rank & U. Weinert: IEEE Trans. Comp-Aid. Design Vol. 9 (1990), p.543.

Google Scholar

[14] E. Feulvarch, J.M. Bergheau & J.B. Leblond: Int. J. Num. Meth. Eng. Vol. 78 (2009), p.1492.

Google Scholar

[15] J. -B. Brunac, D. Huin & J. -B. Leblond: Oxid. of Metals. Vol. 73 (2010), p.565.

Google Scholar

[16] M. Udyavar & D.J. Young: Corr. Sci. Vol. 42 (2000), p.861.

Google Scholar

[17] K.M. Vedula, A.W. Funkenbusch & R.W. Heckel: Oxid. of Metals Vol. 16 (1981), p.385.

Google Scholar

[18] V.B. Trindade, H.J. Christ & U. Krupp: Rev. Esc. Min-Met. Mat. Vol. 62 (2009), p.185.

Google Scholar

[19] Information on http: /www. mathworks. com.

Google Scholar

[20] Information on http: /www. thermocalc. com/index. php.

Google Scholar

[21] R. Fortunier, J. Leblond & D. Pont in: Phase Transformations During the Thermal / Mechanical Processing of Steel, edited by R. Hawbolt & E. Yue, from Proceedings of the International Symposium on Phase Transformations during the Thermal/Mechanical Processing of Steel, The Canadian Institute of Mining, Metallurgy and Petroleum (1995).

Google Scholar

[22] R.W. Hornbeck: Numerical Methods (Quantum Publishers, New York 1975).

Google Scholar

[23] D.J. Young, M.L. Burg & P.R. Munroe: Mater. Sci. Forum Vol. 461-464 (2004), p.21.

Google Scholar