A Simple Method to Create Superhydrophobic Aluminium Surfaces

Article Preview

Abstract:

Superhydrophobic surfaces were prepared using a very simple and low-cost method by spray coating. A high static water contact angle of about 154° was obtained by deposition of stearic acid on an aluminium alloy. However, this coating demonstrated a high contact angle hysteresis (~ 30º). On the other hand, superhydrophobic surfaces with a static contact angle of about 162º and 158º, and a low contact angle hysteresis of about 3º and 5º were respectively obtained by incorporating nanoparticles of SiO2 and CaCO3 in stearic acid. The excellent resulting hydrophobicity is attributed to the synergistic effects of micro/nanoroughness and low surface energy. A study of the wettability of these surfaces at temperatures ranging from 20 to-10 °C showed that the superhydrophobic surface becomes rather hydrophobic at supercooled temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2874-2879

Citation:

Online since:

January 2012

Export:

Price:

[1] Z. Guo, W. Liu, B. -L Su, Journal of Colloid and Interface Science 353 (2010), p.335.

Google Scholar

[2] H. Chen, Z. Yuan, J. Zhang, Y. Liu, K. Li, D. Zhao, S. Li, P. Shi, J. Tang, , J Porous Mater vol 16 (2009), p.447.

Google Scholar

[3] X-M. Li, D. Reinhoudt, M.C. Calama, Chem. Soc. Rev. 36 (2007), p.1350.

Google Scholar

[4] Zhang X., Shi F., Niu J., Jiang Y., Wang Z., J. Mater. Chem. 18 (2008), p.621.

Google Scholar

[5] R. Jafari and M. Farzaneh, Applied Physics A, 102 (2011), p.195.

Google Scholar

[6] C. -H, Xue, S. -T. Jia, J. Zhang, J. -Z. Ma, Sci. Technol. Adv. Mater. 11 (2010), 033002.

Google Scholar

[7] G. Momen, M. Farzaneh, R. Jafari, Applied Surface Science 257 (2011) p.9489.

Google Scholar

[8] Ma M., Hill R. M., Curr. Opin. Colloid Interface Sci. 11 (2006), p.193.

Google Scholar

[9] R. Jafari, R. Menini and M. Farzaneh, Applied Surface Science, 257 (2010), p.1540.

Google Scholar

[10] T. Bahners, T. Textor, K. Opwis, E. Schollmeyer, Journal of Adhesion Science and Technology 22 (2008), p.285.

DOI: 10.1163/156856108x295437

Google Scholar

[11] B. Balu, V. Breedveld, D.W. Hess, Langmuir, 24 (2008), p.4785.

Google Scholar

[12] B. Yin, L. Fanga, J. Hu, A. -Q. Tang, W. -H. Wei, J. He, Applied Surface Science 257 (2010), p.1666.

Google Scholar

[13] S. Ren, S. Yang , Y. Zhao, T. Yu , X. Xiao, Surface Science 546 (2003), p.64.

Google Scholar

[14] S.J. Lee, K. Kim, Vibrational Spectroscopy 18 (1998), p.187.

Google Scholar

[15] D. Kim, W. Hwang, H.C. Park, K. -H. Lee, Current Applied Physics 8, (2008), p.770.

Google Scholar

[16] M. Nosonovsky, B. Bhushan, Multiscale Dissipative echanisms and Hierarchical Surfaces, Verlag Berlin Heidelberg : Springer, (2008).

Google Scholar

[17] P.G. de Gennes, , Rev. Mod. Phys. 57 (1985), p.827.

Google Scholar

[18] Z. Hu, X. Zen, J. Gong, Y. Deng, Colloids and Surfaces A: Physicochem. Eng. Aspects 351 (2009), p.65.

Google Scholar

[19] X. Shi, R. Rosa, A. Lazzeri, Langmuir, 26 (2010), p.8474.

Google Scholar

[20] M.K. Tiwari, I.S. Bayer, G.M. Jursich, T.M. Schutzius, C.M. Megaridis, Applied materials and letters, 2 (2010), p.1114.

Google Scholar

[21] L. Yin, Q. Xia, J. Xue, S. Yang, Q. Wang, Q. Chen, Appl. Surf. Sci. 256 (2010), p.6764.

Google Scholar

[22] R. Karmouch, G.G. Ross, J. Phys. Chem. C 114 (2010), p.4063.

Google Scholar