The Application of In Situ 3D X-Ray Diffraction in Annealing Experiments: First Interpretation of Substructure Development in Deformed NaCl

Article Preview

Abstract:

n-situ 3D X-ray diffraction (3DXRD) annealing experiments were conducted at the ID-11 beamline at the European Synchrotron Radiation Facility in Grenoble. This allowed us to non-destructively document and subsequently analyse the development of substructures during heating, without the influence of surface effects. A sample of deformed single crystal halite was heated to between 260-400 °C. Before and after heating a volume of 500 by 500 by 300 μm was mapped using a planar beam, which was translated over the sample volume at intervals of 5-10 µm in the vertical dimension. In the following we present partially reconstructed orientation maps over one layer before and after heating for 240min at 260 °C. Additional small syn-heating maps over a constrained sample rotation of 12-30º. The purpose of this was to illuminate a few reflections from 1 or 2 subgrains and follow their evolution during heating. Preliminary results show that significant changes occurred within the sample volume, for which, surface effects can be excluded. Results show a number of processes, including: i) change in subgrain boundary misorientation angle and ii) subgrain subdivision into areas of similar lattice orientation with new subgrain boundary formation. These results demonstrate that 3DXRD coupled with in-situ heating is a successful non-destructive technique for examining real-time post-deformational annealing in strongly deformed crystalline materials with complicated microstructures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

461-466

Citation:

Online since:

April 2012

Export:

Price:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

[1] R. Heilbronner and J. Tullis, in: Deformation Mechanisms, Rheology and Tectonics: Current status and Future Perspectives, edited by S. De Meer, M.R. Drury, J.H.P. De Bresser, and G.M. Pennock, Geological Society London Special Publications (2002).

DOI: 10.1144/gsl.sp.2001.200.01.01

Google Scholar

[2] G.C.E. Seward, S. Celotto, D.J. Prior, J. Wheeler and R.C. Pond: Acta Mater. Vol. 52 (2004), p.821.

Google Scholar

[3] Y. Huang and F.J. Humphreys: Acta Mater. Vol. 47 (1999), p.2259.

Google Scholar

[4] S. Piazolo, V.G. Sursaeva and D.J. Prior: Z Metallkd. Vol. 96 (2005), p.1152.

Google Scholar

[5] D.M. Kirch, E. Jannot, L.A. Barrales-Mora, D.A. Molodov and G. Gottstein: Acta Mater. Vol. 56 (2008), p.4998.

DOI: 10.1016/j.actamat.2008.06.017

Google Scholar

[6] M. Bestmann, S. Piazolo, C.J. Spiers and D.J. Prior: J. Struc. Geol. Vol. 27 (2005), p.447.

Google Scholar

[7] S. Piazolo, M. Bestmann, D.J. Prior and C.J. Spiers: Tectonophysics Vol. 427 (2006), p.55.

Google Scholar

[8] V.E. Borthwick and S. Piazolo: submitted to J. Struc. Geol. (2010).

Google Scholar

[9] K. Mirpuri, H. Wendrock, K. Wetzig and J. Szpunar: Microelectron. Eng. Vol. 83 (2006), p.221.

Google Scholar

[10] D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo: Acta Mater. Vol. 55 (2007), p.4233.

Google Scholar

[11] S. Piazolo, M. Jessell, D.J. Prior and P.D. Bons: J. Microsc. Vol. 213 (2004), p.273.

Google Scholar

[12] A. Lens, C. Maurice and J.H. Driver: Mater. Sci. Eng., A Vol. 403 (2005), p.144.

Google Scholar

[13] H.J. Frost, C.V. Thompson and D.T. Walton: Acta Metall. Mater. Vol. 38 (1990), p.1455.

Google Scholar

[14] H.F. Poulsen: Three-dimensional X-ray diffraction microscopy: Mapping polycrystals and their dynamics (Springer Tracts in Modern Physics, Vol. 205, 2004).

DOI: 10.1007/978-3-540-44483-1_5

Google Scholar

[15] S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang, D. Juul Jensen: Science Vol. 305 (2004), p.229.

Google Scholar

[16] S. Schmidt, U.L. Olsen, H.F. Poulsen, H.O. Sørensen, E.M. Lauridsen, L. Margulies, C. Maurice, D. Juul Jensen: Scr. Mater. Vol. 59 (2008), p.491.

DOI: 10.1016/j.scriptamat.2008.04.049

Google Scholar

[17] S.S. West, S. Schmidt, H.O. Sørensen, G. Winther, H.F. Poulsen, L. Margulies, C. Gundlach, D. Juul Jensen: Scr. Mater. Vol. 61 (2009), p.875.

DOI: 10.1016/j.scriptamat.2009.07.027

Google Scholar

[18] E.M. Lauridsen, S. Schmidt, L. Margulies, H.F. Poulsen and D. Juul Jensen, in: Recrystallization and Grain Growth edited by G. Gottstein and Molodov, Proceedings of the first Joint International Conference of Recrystallization and Grain Growth, Aachen, (2001).

Google Scholar

[19] C. Gundlach, W. Pantleon, E.M. Lauridsen, L. Margulies, R.D. Doherty and H.F. Poulsen: Scr. Mater. Vol. 50 (2004), p.477.

Google Scholar

[20] H.F. Poulsen, J.R. Bowen and C. Gundlach: Scr. Mater. Vol. 51 (2004), p.783.

Google Scholar

[21] E.M. Lauridsen, S. Schmidt, S.F. Nielsen, L. Margulies, H.F. Poulsen and D. Juul Jensen: Scr. Mater. Vol. 55 (2006), p.51.

Google Scholar

[22] M. Kuwahara and S. Eiho, in: Digital processing of biomedical images, edited by K. Preston and M. Onoe Plenum Press, New York (1976).

Google Scholar

[23] F.J. Humphreys, P.S. Bate and P.J. Hurley: J. Microsc. Vol. 201 (2001), p.50.

Google Scholar

[24] V.E. Borthwick, S. Piazolo, S. Schmidt and C. Gundlach: (2010), in prep.

Google Scholar