The Samarium Depleted Zone in SmCo5 Magnets

Article Preview

Abstract:

After sintering, SmCo5 magnets may present a surface layer depleted in Samarium. This happens because Samarium is much more susceptible for oxidation than cobalt. Besides, samarium has high vapour pressure. This Sm depleted zone is of the order of ~ 1 mm (in a 10 mm diameter magnet), and present oxygen content 1000 ppm higher than the center of the magnet. This layer is composed by SmCo(5+x), which presents low coercivity (1-2 kOe). The occurrence of the Sm depleted layer is associated with kinks in the 2nd quadrant of the hysteresis curve. After the removal of this layer, the hysteresis kinks disappear. The efficacy of different chemical etchings (Nital and chromic acid) to reveal microstructural constituents was discussed in detail. Nital is recommended for observation of magnetic domains under polarized light (Kerr effect), whereas chromic acid is more suitable to identify Sm2Co7 and other high Sm phases.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

169-174

Citation:

Online since:

August 2012

Export:

Price:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. H. J. Buschow, P. A. Naastepad, F. F. Westendorp: J. Appl. Phys. Vol. 40 (1969), p.4029.

Google Scholar

[2] M. F. de Campos, F. J. G. Landgraf, R. Machado, D. Rodrigues, S. A. Romero, A. C. Neiva, F. P. Missell: J. Alloy. Compd., Vol. 267 (1998), pp.257-264.

DOI: 10.1016/s0925-8388(97)00559-8

Google Scholar

[3] M. F. de Campos, F. J. G. Landgraf, N.H. Saito, S.A. Romero, A.C. Neiva, F.P. Missell, E. de Morais, S. Gama, E.V. Obrucheva, B. V. Jalnin: J. Appl. Phys. Vol. 84, (1998), pp.368-373.

DOI: 10.1063/1.368075

Google Scholar

[4] M. F. de Campos, F.J.G. Landgraf: in: Proc. of 16o International Workshop on Rare-Earth Magnets and their Applications. (Sendai, Japan, 2000), pp.297-306.

Google Scholar

[5] M. F. de Campos, P. R. Rios: J. Alloys Compd. Vol. 377 (2004), pp.121-126.

Google Scholar

[6] M. F. de Campos, F. J. G. Landgraf: in Proc. 14th Int. Workshop on RE Magnets and their Applications eds. F. P. Missell, V. Villas-Boas, H. R. Rechenberg and F. J. G. Landgraf (World Scientific, Singapore, 1996), pp.321-338.

Google Scholar

[7] E. Adler, H. -R. Hilzinger, R. Wagner: Journal of Magnetism and Magnetic Materials Vol. 9 (1978), pp.188-190.

Google Scholar

[8] E. Adler, H. -J. Marik: in: Proc. 5th Int. Workshop on RE Magnets and their Applications. Roanoke VA. Univ. Dayton, Dayton, USA, 1981, p.357–370.

Google Scholar

[9] R. Blank, E. Adler, in Proc. 9th Intern. Workshop on Rare-Earth Magnets (Bad Soden, 1987, pp.537-544.

Google Scholar

[10] C. E. Habermann, A. H. Daane: J. Chem. Phys. Vol. 41 (1964), pp.2818-2827.

Google Scholar

[11] C. K. Gupta, N. Krishnamurthy: Extractive Metallurgy of Rare Earths (CRC PRESS Boca Raton Taylor & Francis e-Library, 2005).

Google Scholar

[12] V. Carle, E. -T. Henig: Pract. Met. Vol. 21 (1984), p.307–310.

Google Scholar

[13] M. F. de Campos, F. J. G. Landgraf: in Proc. 14th Int. Workshop on RE Magnets and their Applications eds. F. P. Missell, V. Villas-Boas, H. R. Rechenberg and F. J. G. Landgraf (World Scientific, Singapore, 1996), pp.432-440.

Google Scholar