Hydrogen Storage, Microstructure and Mechanical Properties of Strained Mg65Ni20Cu5Y10 Metallic Glass

Article Preview

Abstract:

Melt-spun amorphous Mg65Ni20Cu5Y10 metallic glass compacts were subjected to severe shear deformation by high-pressure torsion. High-resolution X-ray diffraction analysis and scanning electron microscopy revealed that high-pressure torsion resulted in a deformation dependent microstructure. Nanoindentation measurements indicated that the heavy shear deformation yields an increase in hardness. High-pressure calorimetry measurements revealed that hydrogen uptake in the fully amorphous alloy occurs at a significantly lower temperature compared to the fully crystallized state, while the amount of absorbed hydrogen increased considerably after shear strain due to the formation of Mg2Ni crystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-79

Citation:

Online since:

November 2012

Export:

Price:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Schlapbach, A. Züttel, Nature 414 (2001) 353-358.

Google Scholar

[2] R.A. Varin, T. Czujko, Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage, Springer Science, New York, (2009).

Google Scholar

[3] R.A. Varin, T. Czujko, Ch. Chiu, Z. Wronski, J. Alloys Compd. 424 (2006) 356-364.

Google Scholar

[4] L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz, Materials Science Forum 225 (1996) 853-858.

DOI: 10.4028/www.scientific.net/msf.225-227.853

Google Scholar

[5] G. Liang, S. Boily, J. Huot, A. Van Neste, R. Schulz, J. Alloys Compd. 276 (1998) 302-306.

Google Scholar

[6] M. Danaie, D. Mitlin, J. Alloys Compd. 476 (2008) 590-598.

Google Scholar

[7] M. Porcu, A.K. Petford-Long, J.M. Sykes, Journal of Alloys and Compounds 453 (2008) 341-346.

Google Scholar

[8] V. Fuster, G. Urretavizcaya, F.J. Castro, J. Alloys Compd. 481 (2009) 673-680.

Google Scholar

[9] D. Fátay, Á. Révész, T. Spassov, Journal of Alloys and Compounds 399 (2005) 237-241.

Google Scholar

[10] M. Hara, S. Morozumi, K. Watanabe, J. Alloys Compd. 414 (2006) 207-214.

Google Scholar

[11] S. Kalinichenka, L. Röntzsch, C. Baehetz, B. Kieback, J. Alloys. Compd. 496 (2010) 608-613.

Google Scholar

[12] T. Spassov, U. Köster, J. Alloys Compd. 279 (1998) 279-286.

Google Scholar

[13] T. Spassov, U. Köster, J. Alloys Compd. 287 (1999) 243-250.

Google Scholar

[14] Y.H. Zhang, D.L. Zhao, B.W. Li, H.P. Ren, S.H. Guo, X.L. Wang, J. Alloys Compd. 491 (2010) 589-594.

Google Scholar

[15] Y. Kusadome, K. Ikeda, Y. Nakamori, S. Orimo, Z. Horita, Scripta Mater. 57 (2007) 751.

DOI: 10.1016/j.scriptamat.2007.06.042

Google Scholar

[16] K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, Scripta Mater. 64 (2011) 880-883.

Google Scholar

[17] D.R. Leiva, A. Moreira Jorge, T.T. Ishikawa, J. Huot, D. Fruchart, S. Miraglia, C.S. Kiminami, W.J. Botta, Adv. Eng. Mater 12 (2010) 786-792.

DOI: 10.1002/adem.201000030

Google Scholar

[18] Á. Révész, Zs. Kánya, T. Verebélyi, P.J. Szabó, A.P. Zhilyaev, T. Spassov J. Alloys Compd. 504 (2010) 83-88.

DOI: 10.1016/j.jallcom.2010.05.058

Google Scholar

[19] A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893-979.

Google Scholar

[20] S. Hóbor, Zs. Kovács, Á. Révész, J. Alloys Compd. 509 (2011) 8641-48.

Google Scholar

[21] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.

Google Scholar

[22] Á. Révész, Á. Kis-Tóth, L.K. Varga, E. Schafler, I. Bakonyi, T. Spassov, Int. J. Hydrogen Energy, 37 (2012) 5769-5776.

DOI: 10.1016/j.ijhydene.2011.12.160

Google Scholar

[23] F.O. Méar, D.V. Louzguine-Luzgin, A. Inoue, J. Alloys Compd. 496 (2010) 149-154.

Google Scholar

[24] F. Spaepen, Acta Metall. 25 (1977) 407-415.

Google Scholar