Composite Material Sensitive to Volatile Organic Compounds

Article Preview

Abstract:

This work evaluates fluorinated thin films and their composites for sensor development. Composites were produced using 5 µm starch particles and plasma films obtained from organic fluorinated and silicon compounds reactants. Silicon wafers and aluminum trenches were used as substrates. Film thickness, refractive index and chemical structure were also determined. Scanning electron microscopy shows conformal deposition on aluminum trenches. Films deposited on silicon were exposed to vapor of volatile organic compounds and CV curves were obtained. A qualitative model (FemLab 3.2® program) was proposed for the electronic behavior. These environmentally correct films can be used in electronic devices and preferentially reacted to polar compounds. Nonetheless, due to the difficulty in signal recovery, these films are more effective in one-way sensors, in sub-ppm range.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

289-294

Citation:

Online since:

November 2012

Export:

Price:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Riul Jr, A. Riul, A. M. G. Soto, S. V. Mello, S. Bone, D. M. Taylor, L. H. C. Mattoso, An electronic tongue using polypyrrole and polyaniline, Synthetic Metals 132 (2003) 109-116.

DOI: 10.1016/s0379-6779(02)00107-8

Google Scholar

[2] A. Vilan, D. Cahen, How organic molecules can control electronic devices, Trends in Biotechnology 20 (2002) 22-29.

DOI: 10.1016/s0167-7799(01)01839-x

Google Scholar

[3] J. G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications, Materials Science and Engineering: R: Reports 52 (2006) 49-91.

DOI: 10.1016/j.mser.2006.04.002

Google Scholar

[4] Marquette CA, Blum, LJ (2006) State of the art and recent advances in immunoanalytical systems. Biosensors and Bioelectronics 21, 8: 1424-1433.

DOI: 10.1016/j.bios.2004.09.037

Google Scholar

[5] H. Cong, M. Radosz, B. F. Towler, Y. Shen, Polymer–inorganic nanocomposite membranes for gas separation, Separation and Purification Technology 55 (2007) 281-291.

DOI: 10.1016/j.seppur.2006.12.017

Google Scholar

[6] A. Kansal, Sources and reactivity of NMHCs and VOCs in the atmosphere: A review, Journal of Hazardous Materials 166 (2009) 17-26.

DOI: 10.1016/j.jhazmat.2008.11.048

Google Scholar

[7] E. J. Wolfrum, R. M. Meglen, D. Peterson, J. Sluiter, Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels, Sens. Act. B: Chem. 115 (2006).

DOI: 10.1016/j.snb.2005.09.026

Google Scholar

[8] P. A. Lieberzeit, F. L. Dickert, Sensor technology and its application in environmental analysis, Anal Bioanal Chem 387 (2007) 237–247.

DOI: 10.1007/s00216-006-0926-z

Google Scholar

[9] R. R. Lima, E.R. Fachini, L. M. Silva, E.Y. Matsuy, E. Pecoraro, M. L. P. Silva, Perfluorocompound and hexamethyldisilazane thin film composite material used for surface modification, Materials Science Forum 636-637 (2010) 1073-1078.

DOI: 10.4028/www.scientific.net/msf.636-637.1073

Google Scholar

[10] R. R. Lima, L. F. Hernandez, A. T. Carvalho, R. A. M. Carvalho, M. L. P. da Silva, Corrosion resistant and adsorbent plasma polymerized thin film, Sens. Act. Chem B 141 (2009) 349-360.

DOI: 10.1016/j.snb.2009.07.003

Google Scholar

[11] M.Y. Ieiri, E.Y. Matsui, E.S. Ferreira, L.M. Silva, R.R. Lima, M.L.P. Silva, Electrical characterization of adsorbent films for voc´s detection, Revista Brasileira de Aplicações de Vácuo. 28 (2009) 7-13.

Google Scholar

[12] R. T. Gengenbach and H. J. Griesser, Compositional changes in plasma-deposited fluorocarbon films during ageing, Surf. Interface Anal. 26 (1998) 498-511.

DOI: 10.1002/(sici)1096-9918(199806)26:7<498::aid-sia393>3.0.co;2-3

Google Scholar