Thermodynamics-Integrated Simulation of Precipitate Evolution in Al-Mg-Si-Alloys

Article Preview

Abstract:

Metastable precipitates govern the mechanical properties of hardenable Al-alloys. A computational precipitation simulation approach is presented that is based on a combination of compiled and assessed thermodynamic and diffusion data with predictive physical models. Predictive precipitation kinetics simulation delivers approximations of thermodynamic properties that would otherwise require time-consuming computational techniques based on density functional theory. Coupling of thermodynamics with thermo-kinetic simulation of hardenable Al-alloys Al-Mg-Si 6016 is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

476-480

Citation:

Online since:

July 2013

Export:

Price:

[1] A. Guinier, Interpretation of abnormal diffusion of X-rays by age-hardening alloys, Acta Crystallogr. 5 (1952) 121-130. In French.

Google Scholar

[2] C. Ravi, C. Wolverton, First-principles study of crystal structure and stability of Al–Mg–Si– (Cu) precipitates, Acta Mater. 52 (2004) 4213-4227.

DOI: 10.1016/j.actamat.2004.05.037

Google Scholar

[3] M.A. van Huis, J.H. Chen, M.H.F. Sluiter, H.W. Zandbergen, Phase stability and structural features of matrix-embedded hardening precipitates in Al–Mg–Si alloys in the early stages of evolution, Acta Mater. 55 (2007) 2183-2199.

DOI: 10.1016/j.actamat.2006.11.019

Google Scholar

[4] H. Zhang, Y. Wang, S.L. Shang, C. Ravi, C. Wolverton, L.Q. Chen, Z.K. Liu, Solvus boundaries of (meta)stable phases in the Al-Mg-Si system: First-principles phonon calculations and thermodynamic modeling, CALPHAD 34 (2010) 20-25.

DOI: 10.1016/j.calphad.2009.10.009

Google Scholar

[5] C. Wolverton, Crystal structure and stability of complex precipitate phases in Al–Cu–Mg– (Si) and Al–Zn–Mg alloys, Acta Mater. 49 (2001) 3129-3142.

DOI: 10.1016/s1359-6454(01)00229-4

Google Scholar

[6] A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok, E. Kozeschnik, Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys, Int. J. Mater. Res. 101 (2010) 1089-1096.

DOI: 10.3139/146.110396

Google Scholar

[7] M. Torsæter, H.S. Hasting, W. Lefebvre, C.D. Marioara, J.C. Walmsley, S.J. Andersen, R. Holmestad, The influence of composition and natural aging on clustering during presaging in Al-Mg-Si alloys, J. Appl. Phys. 108 (2010) 073527-1-073527-9.

DOI: 10.1063/1.3481090

Google Scholar

[8] K. Matsuda, H. Gamada, K. Fujii, Y. Uetani, T. Sato, A. Kamio, S. Ikeno, High-resolution electron microscopy on the structure of Guinier–Preston zones in an Al-1.6 Mass% Mg2Si alloy, Metall. Mater. Trans. A 29 (1998) 1161-1167.

DOI: 10.1007/s11661-998-0242-7

Google Scholar

[9] M.J. Starink, S.C. Wang, The thermodynamics of and strengthening due to co-clusters: general theory and application to the case of Al-Cu-Mg alloys, Acta Mater. 57 (2009) 2376-2389.

DOI: 10.1016/j.actamat.2009.01.021

Google Scholar

[10] M.J. Starink and A.-M. Zahra, Low temperature decomposition of Al–Mg alloys: GP zones and L12 ordered precipitates, Philos. Mag. A 76 (1997) 701-714.

DOI: 10.1080/01418619708214031

Google Scholar

[11] H.S. Hasting, A.G. Frøseth, S.J. Andersen, R. Vissers, J.C. Walmsley, C.D. Marioara, F. Danoix, W. Lefebvre, R. Holmestad, Composition of β'' precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations, J. Appl. Phys. 106 (2009) 123527-1-123527-9.

DOI: 10.1063/1.3269714

Google Scholar

[12] S. Pogatscher, H. Antrekowitsch, H. Leitner, A.S. Sologubenko, P.J. Uggowitzer, Influence of the thermal route on the peak-aged microstructures in an Al-Mg-Si aluminium alloy. Scripta Mater. 68 (2013) 158-161.

DOI: 10.1016/j.scriptamat.2012.10.006

Google Scholar

[13] D. Zhao, L. Zhou, Y. Kong, A. Wang, J. Wang, Y. Peng, Y. Du, Y. Ouyang, W. Zhang, Structure and thermodynamics of the key precipitated phases in the Al-Mg-Si alloys from first-principles calculations, J. Mater. Sci. 46 (2011) 7839-7849.

DOI: 10.1007/s10853-011-5765-4

Google Scholar

[14] S.D. Dumolt, D.E. Laughlin, J.C. Williams, Formation of modified β' phase in aluminium alloy 6061, Scripta Metall. 18 (1984) 1347-1350.

DOI: 10.1016/0036-9748(84)90362-4

Google Scholar

[15] Information on http://www.matcalc.tuwien.ac.at., E. Kozeschnik. Last access, 2013-04-08.

Google Scholar

[16] B. Sonderegger, E. Kozeschnik, Generalized nearest-neighbour broken-bond analysis of randomly oriented coherent interfaces in multicomponent fcc and bcc structures, Metall. Mater. Trans. A 40 (2009) 499-510.

DOI: 10.1007/s11661-008-9752-6

Google Scholar

[17] J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates. I: Theory. Mater. Sci. Eng. A 385 (2004) 166.

DOI: 10.1016/j.msea.2004.06.018

Google Scholar

[18] A. Falahati, P. Lang, E. Kozeschnik, Precipitation in Al-alloy 6016 - the role of excess vacancies, Mater. Sci. Forum 706-709 (2012) 317-322.

DOI: 10.4028/www.scientific.net/msf.706-709.317

Google Scholar