Influence of Parallel Evolving Microstructure on Thermal Diffusivity in Strontium Titanate

Article Preview

Abstract:

This paper reports some research findings on the parallel evolutions of microstructural properties and thermal diffusivity in strontium titanate. Strontium titanate samples have been prepared via the high energy ball milling technique and subsequently moulded by a hydraulic pressing and followed by cold isostatic pressing. Nanometer-sized compacted powder samples were sintered from 500 to 1400°C using 100°C increments. Strontium titanate formation was observed at as early as 500°C sintering temperature alongside secondary phases. The full formation of strontium titanate was observed at 800°C sintering temperature and above. Average grain sizes showed a fluctuating trend with increased sintering temperatures due to carbonate decomposition at lower sintering temperatures (500 to 800°C) and grain growth phenomenon at higher sintering temperatures (900 to 1400°C). Parallel characterization of evolving thermal diffusivity showed the same trend of fluctuation at low sintering temperatures as indirect relationship but increased with increased grain size due to a lesser amount of phonon scattering. However, thermal diffusivity values decreased with increased temperatures because of increased phonon-phonon scattering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

416-425

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] J. K. Hulm, The Dielectric Properties of some Alkaline Earth Titanates at Low Temperatures, Proc. Phys. Soc. A 63 (1950) 1184-1185.

DOI: 10.1088/0370-1298/63/10/118

Google Scholar

[2] R. Moos, K. H. Hardtl, Defect Chemistry of Donor-Doped and Undoped Strontium Titanate Ceramics between 1000° and 1400°C, J. Am. Ceram. Soc. 80 (10) (1997) 2549–62.

DOI: 10.1111/j.1151-2916.1997.tb03157.x

Google Scholar

[3] M. T. Buscaglia, F. Maglia, U. Anselmi-Tamburini, D. Marré, I. Pallecchi, A. Ianculescu, G. Canu, M. Viviani, M. Fabrizio, V. Buscaglia, Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics, J. Eur. Ceram. Soc. 34 (2014).

DOI: 10.1016/j.jeurceramsoc.2013.08.009

Google Scholar

[4] Y. Kinemuchi, H. Nakano, M. Mikami, K. Kobayashi, K. Watari,Y. Hotta, Enhanced boundary-scattering of electrons and phonons in nanograined zinc oxide, J. Appl. Phys. 108 (2010) 053721-1- 053721-6.

DOI: 10.1063/1.3475650

Google Scholar

[5] Y. Wang, K. Fujinami, R. Zhang, C. Wan, N. Wang, Y. Ba, K. Koumoto, Interfacial Thermal Resistance and Thermal Conductivity in Nanograined SrTiO3, Appl. Phys. Exp. 3 (2010) 031101-1-031101-3.

DOI: 10.1143/apex.3.031101

Google Scholar

[6] H. Rath, S. Anand, M. Mohapatra, P. Dash, T. Som, U. P. Singh, N. C. Mishra, Effect of thermal annealing on the structure and microstructure of TiO2 thin films, Indian J. Phys. 83 (4) (2009) 559-565.

DOI: 10.1007/s12648-009-0020-4

Google Scholar

[7] G. J. Yang, C. J. Li, Y. Y. Wang, Phase formation of nano-TiO2 particles during flame spraying with liquid feedstock, J. Thermal Spray Technol. 14 (2005) 480–486.

DOI: 10.1361/105996305x76487

Google Scholar

[8] O. Parkash, D. Kumar, C. C. Christopher, Preparation structure and dielectric behaviour of the system Sr1–xLaxTi1–xFexO3 (x ≤0. 50), Proc. Indian Acad. Sci. (Chem. Sci. ) 115, (2003) 649–661.

DOI: 10.1007/bf02708255

Google Scholar

[9] R.J. Bruls, H.T. Hintzen, R. Metselaar, A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds: A case study for MgSiN2, AlN and β-Si3N4 ceramics, J Eur Ceram Soc 25(6) (2005) 767-779.

DOI: 10.1016/j.jeurceramsoc.2004.05.003

Google Scholar

[10] K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, F. Ryoji, Oxide Thermoelectric Materials : A Nanostructuring Approach, Annu. Rev. Mater. Res. 40 (2010) 363–394.

DOI: 10.1146/annurev-matsci-070909-104521

Google Scholar

[11] D. Faoite, D.J. Browne, F.R. Chang-Díaz, K.T. Stanton, A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics, J Mater Sci 47 (2012) 4211–4235.

DOI: 10.1007/s10853-011-6140-1

Google Scholar