[1]
R. Whatmore, Ferroelectric materials, in: S. Kasap, P. Capper (Eds.), Electronic and photonic materials, Springer Intern. Publ., Boston, 2017, pp.589-614.
Google Scholar
[2]
E.T. Keve, Pyroelectric materials based on triglycine sulphate (TGS) for infrared detection, Philips tech. Rev. 35 (1975) 247-257.
Google Scholar
[3]
M.D. Aggarwal, A.K. Batra, P. Guggilla, M.E. Edwards, B.G. Penn, J.R. Currie, Pyroelectric materials for uncooled infrared detectors: processing, properties and applications, Marshall Space Flight Center MSFC, Alabama, (2010).
Google Scholar
[4]
S.E. Aleksandrov, G.A. Gavrilov, A.A. Kapralov, E.P. Smirnova, G.Yu. Sotnikova, A.V. Sotnikov, Relaxer Ferroelectrics as Promising Materials for IR Detectors, Technical Physics. 49 (2004) 1176-1180.
DOI: 10.1134/1.1800239
Google Scholar
[5]
M. Trybus, B. Wos, Dynamic response of TGS ferroelectric samples in paraelectric phase, Infrared Phys. Technol. 71 (2015) 526-532.
DOI: 10.1016/j.infrared.2015.06.015
Google Scholar
[6]
A. Hadni, R. Thomas, Laser study and applications to pyroelectric detectors, Ferroelectrics. 49 (1972) 39-49.
DOI: 10.1080/00150197208241518
Google Scholar
[7]
R.B. Lal, A.K. Batra Growth and Properties of Triglycine (TGS) Sulfate Crystals, Ferroelectrics. 142 (1993) 51-82.
DOI: 10.1080/00150199308237884
Google Scholar
[8]
A.A. Bogomolov, O.V. Malyshkina, A.V. Solnyshkin, Effects of temperature gradient on the surface domain structure in DTGS crystals, Ferroelectrics. 191 (1997) 313-317.
DOI: 10.1080/00150199708015656
Google Scholar
[9]
B.A. Strukov, E.P. Ragula, S.V. Arkhangel'skaya, I.V. Shnaidshtein, Logarithmic singularity in the specific heat in the vicinity of phase transitions in uniaxial ferroelectrics, Physics of the Solid State. 40 (1998) 94-95.
DOI: 10.1134/1.1130241
Google Scholar
[10]
O.V. Malyshkina, A.A. Movchikova, R.M. Grechishkin, O.N. Kalugina, Use of the thermal square wave method to analyze polarization state in ferroelectric materials, Ferroelectrics. 400 (2010) 63-75.
DOI: 10.1080/00150193.2010.505470
Google Scholar
[11]
P.I. Kushnarev, A.G. Maslovskaya, S.V. Baryshnikov, Polar properties of nominally pure polarized TGS crystals, Russian Physics Journal. 54 (2011) 86-91.
DOI: 10.1007/s11182-011-9583-6
Google Scholar
[12]
R.M. Grechishkin, O.V. Malyshkina, N.B. Prokofieva, S.S. Soshin, Effect of domain structure realignment on the pyroelectric current temperature dependence in gadolinium molybdate crystals, Ferroelectrics. 251 (2001) 207-212.
DOI: 10.1080/00150190108008519
Google Scholar
[13]
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, (2014).
Google Scholar
[14]
M. Zecova, J. Terpak, Heat conduction modeling by using fractional-order derivatives, Applied Mathematics and Computation. 257 (2015) 365-373.
DOI: 10.1016/j.amc.2014.12.136
Google Scholar
[15]
J.F. Scott, Fractal dimensions in switching kinetics of ferroelectrics, University of Cambridge Press., Cambridge, (1998).
Google Scholar
[16]
N.M. Galiyarova, A.B. Bey, E.A. Kuznetzov, Y.I. Korchmariyuk, Fractal dimensionalities and microstructural parameters of piezoceramics PZTNB-1, Ferroelectrics. 307 (2004) 205-211.
DOI: 10.1080/00150190490492970
Google Scholar
[17]
M.K. Roy, J. Paul, S. Dattagupta, Domain dynamics and fractal growth analysis in thin ferroelectric films, IEEE Xplore. 109 (2010) 014108-014108.
DOI: 10.1063/1.3456505
Google Scholar
[18]
A.G. Maslovskaya, T.K. Barabash, Dynamic simulation of polarization reversal processes in ferroelectric crystals under electron beam irradiation, Ferroelectrics. 442 (2013) 18-26.
DOI: 10.1080/00150193.2013.773855
Google Scholar
[19]
S.G. Samko, O.I. Marichev A.A. Kilbas, Fractional integrals and derivatives. Theory and Application, Taylor & Francis, London, (2002).
Google Scholar