Nanostructured Thin films of Anthracene by Liquid-Liquid Interface Recrystallization Technique

Article Preview

Abstract:

Herein, we report the fabrication of anthracene nanostructures and, in turn, their thin films at the air-water interface by recrystallization at the liquid-liquid interface. This method is simple, inexpensive and allows the deposition of anthracene nanoparticulate thin films on large and a variety of substrates. The virgin films were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Hot Stage Polarizing Microscopy and UV-Visible spectroscopy. Interestingly, it was found that these thin films are comprised of nanosized bushy clusters of anthracene molecules as revealed by TEM. Also, with increase in the thickness of the films, the formation of irregular microtapes was evinced by SEM. The absorption spectra reveals the presence of 2 excitonic peaks for the lowest dip sample (10 dips) whereas the spectra recorded for higher dip samples (20 dips, 30dips, 40dips) closely match with that of pure anthracene in chloroform solution. The dramatic reduction in the melting point as revealed by hot stage polarizing microscopy is the salient feature of the work.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 119)

Pages:

27-34

Citation:

Online since:

January 2007

Export:

Price:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.R. Forrest, P.E. Burrows, E.I. Haskal, F.F. So: Phys. Rev. B Vol. 49 (1994), p.11309.

Google Scholar

[2] F. Biscarini, R. Zamboni, P. Samori, P. Ostoja, C. Taliani: Phys. Rev. B Vol. 52 (1995), p.14868.

Google Scholar

[3] P. Fenter, F. Schreiber, L. Zhou, P. Eisenberger, S.R. Forrest: Phys. Rev. B Vol. 56 (1997), p.3046.

Google Scholar

[4] M. Brinkmann, F. Biscarini, C. Taliani, I. Aiello, M. Ghendini: Phys. Rev. B Vol. 61 (2000) , p. R163339.

Google Scholar

[5] Frank-J. Meyer zu Heringdorf, M. C. Reuter, R.M. Tromp: Nature Vol. 412 (2001), pp.517-520.

DOI: 10.1038/35087532

Google Scholar

[6] A. C. Dürr, F. Schreiber, K. A. Ritley, V. Kruppa, J. Krug, H. Dosch, B. Struth Phys. Rev. Lett . Vol. 90 (2003), p.016104.

DOI: 10.1103/physrevlett.90.016104

Google Scholar

[7] R. Ruiz, B. Nickel, N. Koch, L. C. Feldman,R. F. Haglund, Jr., A. Kahn,F. Family,G. Scoles Phys. Rev. Lett . Vol. 91 (2003), p.136102.

Google Scholar

[8] M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, R. L. Headrick, Brian T. Weslowski, R. N. Shashidhar, C. S. Dulcey, Appl. Phys. Lett. Vol. 79 (2001), p.1300.

DOI: 10.1063/1.1394952

Google Scholar

[9] M. Shtein, P. Peumans, J. B. Benziger, S. R. Forrest: J. Appl. Phys. Vol. 93 (2003), p.4005.

Google Scholar

[10] P.S. Vincett, W. A. Barlow: Thin Solid Films Vol. 71 (1980) , p.305.

Google Scholar

[11] A. Sassella, I. Baldi, A. Borghesi, M. Campione, L. Miozzo, M. Moret, A. Papagni, A. Salerno, S. Tavazzi, S. Trabattoni, J. Phys. Chem. Vol. B 109 (2005), p.5150.

DOI: 10.1021/jp045581j

Google Scholar

[12] S.R. Forrest: Chem. Rev. Vol. 97 (1997), pp.1793-13 M. F. Mabrook, C. Pearson, M. C. Petty: Appl. Phys. Lett. Vol. 86 (2005), p.013507.

Google Scholar

[14] A. R. Elsharkawi, K.C. Rao: J. Phys. Chem. Solids Vol. 38 (1977), p.95.

Google Scholar

[15] M. Daffertshofer, H. Port, H. C. Wolf, Chem. Phys Vol. 200 (1995), p.225.

Google Scholar

[16] M. Pope, H. P. Kallmann, P. Magnante., J. Chem. Phys. Vol. 38(8) (1963), p. (2042).

Google Scholar

[17] (a) J.K. Borchardt: Materials Today, September (2004).

Google Scholar

[18] R.R. Hawaldar, K.G. Kanade, K.R. Patil, S.D. Sathaye U.P. Mulik, D.P. Amalnerkar: Mater. Chem. Phys. Vol. 91 (2005), p.447.

DOI: 10.1016/j.matchemphys.2004.12.007

Google Scholar

[19] A. Pimpinelli and J. Villan : Physics of Crystal Growth, Cambridge University Press(1999), Chapter 10.

Google Scholar