Hydrogenation in Crystalline Silicon Materials for Photovoltaic Application

Article Preview

Abstract:

In this contribution an overview of hydrogenation issues for (multi-)crystalline silicon material is given. Crystalline silicon material for photovoltaic application contains more defects than material used for other semiconductor device fabrication. Therefore passivation of bulk defects has to be performed to reach higher efficiencies and exploit the cost reduction potential of these materials. Especially minority charge carrier lifetimes of ribbon silicon can be drastically improved by hydrogenation in combination with a gettering step. Apart from bulk passivation atomic hydrogen plays an important role in surface passivation via dielectric layers. Performance of single dielectric layers or stack systems can be increased after a hydrogenation step. It is believed that hydrogen can passivate defects at the silicon/dielectric interface allowing for lower surface recombination velocities. In industrial application hydrogenation is performed via deposition of a hydrogen-rich PECVD SiNx layer followed by a belt furnace annealing step. Surface passivation for characterization of charge carrier bulk lifetime is often performed with the same technique, omitting the annealing step to avoid in-diffusion of hydrogen. It is shown that for some crystalline silicon materials even the PECVD SiNx deposition alone (without annealing step) can cause significant bulk defect passivation, which in this case causes an unwanted change of bulk lifetime.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

343-349

Citation:

Online since:

October 2009

Export:

Price:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Photon 2009(4), p.54.

Google Scholar

[2] G. Hahn and A. Schönecker, J. Phys.: Condens. Matter 16 (2004), p. R1615.

Google Scholar

[3] A.W. Stephens and M.A. Green, Sol. Energy Mat. Sol. Cells Vol. 45 (1997), p.255.

Google Scholar

[4] A.G. Aberle: Advanced Surface Passivation and Analysis (Centre for Photovoltaic Engineering, UNSW, Australia 1999).

Google Scholar

[5] C.E. Dube and J.I. Hanoka, Proc. 31 st IEEE PVSC, Lake Buena Vista 2005, p.883.

Google Scholar

[6] G. Hahn, A. Schönecker, A.R. Burgers, R. Ginige, K. Cherkaoui and D. Karg, Proc. 20 th EU PVSEC, Barcelona 2005, p.717.

Google Scholar

[7] S. Kleekajai, F. Jiang, M. Stavola, V. Yelundur, K. Nakayashiki, A. Rohatgi, G. Hahn, S. Seren and J. Kalejs, J. Appl. Phys. Vol. 100 (2006), p.093517.

DOI: 10.1063/1.2363684

Google Scholar

[8] M. Sheoran, D.S. Kim, A. Rohatgi, H.F.W. Dekkers, G. Beaucarne, M. Young and S. Asher, Appl. Phys. Lett. Vol. 92 (2008), p.172107.

DOI: 10.1063/1.2917467

Google Scholar

[9] P. Geiger, G. Kragler, G. Hahn and P. Fath, Sol. Energy Mat. Sol. Cells Vol. 85 (2005), p.559.

Google Scholar

[10] A. Rohatgi, V. Yelundur, J. Jeong, A. Ebong, D. Meier, A.M. Gabor and M.D. Rosenblum, Proc. 16th EU PVSEC, Glasgow 2000, p.1120.

Google Scholar

[11] A. Rohatgi, D.S. Kim, K. Nakayashiki, V. Yelundur and B. Rounsaville, Appl. Phys. Lett. Vol. 84 (2004), p.145.

Google Scholar

[12] M. Käs, G. Hahn and A. Metz, Proc. 31 st IEEE PVSC, Lake Buena Vista 2005, p.923.

Google Scholar

[13] A. Van Wieringen and N. Warmoltz, Physica Vol. 22 (1956), p.849.

Google Scholar

[14] M. Käs, G. Hahn and A. Metz, Proc. 21 st EUPVSEC, Dresden 2006, p.679.

Google Scholar

[15] M.P. Godlewski, C.R. Baraona and H.W. Brandhorst, Proc. 10 th IEEE PVSC, Palo Alto 1973, p.40.

Google Scholar

[16] G. Agostinelli, P. Choulat, H.F.W. Dekkers, Y. Ma and G. Beaucarne, 21 st EU PVSEC, Dresden 2006, p.601.

Google Scholar

[17] N.E. Posthuma, T. Janssens, E. Van Kerschaver, P. Choulat, X. Loozen, Y. Ma, J. John, G. Beaucarne and J. Poortmans, 23rd EUPVSEC, Valencia 2008, p.1600.

Google Scholar

[18] M. Käs, G. Hahn, A. Metz, G. Agostinelli, Y. Ma, J. Junge, A. Zuschlag and D. Grötschel, Proc. 22nd EC PVSEC Milan 2007, p.897.

Google Scholar

[19] F. Book, B. Raabe, A. Dastgheib-Shirazi, H. Haverkamp and G. Hahn, Proc. 24 th EU PVSEC, Hamburg 2009, in press.

Google Scholar

[20] G. Hahn C. Zechner, B. Bitnar, M. Spiegel, W. Jooss, P. Fath, G. Willeke, E. Bucher and H. - U. Höfs, Prog. Photovolt. Res. Appl. Vol. 6 (1998), p.163.

DOI: 10.1002/(sici)1099-159x(199805/06)6:3<163::aid-pip219>3.0.co;2-h

Google Scholar

[21] B. Herzog, B. Raabe and G. Hahn, 22 nd EU PVSEC Milan 2007, p.1722.

Google Scholar

[22] B. Herzog, G. Hahn, M. Hofmann, I.G. Romijn and A.W. Weeber, Proc. 23rd EU PVSEC, Valencia 2008, p.1863.

Google Scholar