Investigation of Spinodal Decomposition in Fe-Cr Alloys: CALPHAD Modeling and Phase Field Simulation

Article Preview

Abstract:

This work is dedicated to simulate the spinodal decomposition of Fe-Cr bcc (body centered cubic) alloys using the phase field method coupled with CALPHAD modeling. Thermodynamic descriptions have been revised after a comprehensive review of information on the Fe-Cr system. The present work demonstrates that it is impossible to reconcile the ab initio enthalpy of mixing at the ground state with the experimental one at 1529 K using the state-of-the-art CALPHAD models. While the phase field simulation results show typical microstructure of spinodal decomposition, large differences have been found on kinetics among experimental results and simulations using different thermodynamic inputs. It was found that magnetism plays a key role on the description of Gibbs energy and mobility which are the inputs to phase field simulation. This work calls for an accurate determination of the atomic mobility data at low temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1060-1065

Citation:

Online since:

June 2011

Export:

Price:

[1] W. Xiong, M. Selleby, Q. Chen, J. Odqvist, Y. Du: Critical Reviews in Solid State and Materials Sciences Vol. 35 (2010), p.125.

DOI: 10.1080/10408431003788472

Google Scholar

[2] P. Olsson, I.A. Abrikosov, L. Vitos, J. Wallenius: Journal of Nuclear Materials Vol. 321 (2003), p.84.

Google Scholar

[3] P.A. Korzhavyi, A.V. Ruban, J. Odqvist, J.O. Nilsson, B. Johansson: Physical Review B: Condensed Matter and Materials Physics Vol. 79 (2009), p.054202.

Google Scholar

[4] W. Xiong, P. Hedström, M. Selleby, J. Odqvist, M. Thuvander, Q. Chen. CALPHAD modeling of the Fe-Cr system supported by calorimetry and atom probe tomography. to be published, (2011).

DOI: 10.1016/j.calphad.2011.05.002

Google Scholar

[5] Information on http: /www. thermocalc. com.

Google Scholar

[6] Information on http: /www. mech. kth. se/~gustava/femLego.

Google Scholar

[7] J.O. Andersson, B. Sundman: CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry Vol. 11 (1987), p.83.

Google Scholar

[8] I. Mirebeau, M. Hennion, G. Parette: Physical Review Letters Vol. 53 (1984), p.687.

Google Scholar

[9] A.V. Ruban, P.A. Korzhavyi, B. Johansson: Physical Review B: Condensed Matter and Materials Physics Vol. 77 (2008), p.094436.

Google Scholar

[10] J. Sánchez-Barriga, J. Fink, V. Boni, I. Di Marco, J. Braun, J. Minár, A. Varykhalov, O. Rader, V. Bellini, F. Manghi, H. Ebert, M.I. Katsnelson, A.I. Lichtenstein, O. Eriksson, W. Eberhardt, H.A. Dürr: Physical Review Letters Vol. 103 (2009).

DOI: 10.1103/physrevlett.103.267203

Google Scholar

[11] Q. Chen, B. Sundman: Journal of Phase Equilibria Vol. 22 (2001), p.631.

Google Scholar

[12] J.M. Joubert: Progress in Materials Science Vol. 53 (2008), p.528.

Google Scholar

[13] W.A. Dench: Transactions Faraday Society Vol. 59 (1963), p.1279.

Google Scholar

[14] G. Bonny, R.C. Pasianot, L. Malerba, A. Caro, P. Olsson, M.Y. Lavrentiev: Journal of Nuclear Materials Vol. 385 (2009), p.268.

DOI: 10.1016/j.jnucmat.2008.12.001

Google Scholar

[15] L. Malerba, A. Caro, J. Wallenius: Journal of Nuclear Materials Vol. 382 (2008), p.112.

Google Scholar

[16] P. Olsson, I.A. Abrikosov, J. Wallenius: Physical Review B: Condensed Matter and Materials Physics Vol. 73 (2006), p.104416.

Google Scholar

[17] K.A. Grönhagen, Phase-field modeling of surface-energy driven process, PhD Thesis, Stockholm (2009).

Google Scholar

[18] B. Jönsson: ISIJ International Vol. 35 (1995), p.1415.

Google Scholar

[19] J.M. Hyde, M.K. Miller, A. Cerezo, G.D.W. Smith: Applied Surface Science Vol. 87-88 (1995), p.311.

Google Scholar