Mechanisms of Dislocation Network Formation in Si(001) Hydrophilic Bonded Wafers

Article Preview

Abstract:

Structures of Si(001) hydrofillic bonded wafers have been studied by transmission electron microscopy. Model of three-fold nods generation during interaction of intersecting mixed and screw dislocations has been suggested and applied to analyze geometrical features of dislocation networks. Possible mechanisms of dislocation generation at the interface between Si bonded wafers are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

253-258

Citation:

Online since:

August 2011

Export:

Price:

[1] M. Reiche, M. Kittler, R. Scholz, A. Hähnel, T. Arguirov, Structure and properties of dislocations in interfaces of bonded silicon wafers, J. Phys.: Conf. Ser. 281 (2011) 012017-012026.

DOI: 10.1088/1742-6596/281/1/012017

Google Scholar

[2] M. Reiche, Dislocation networks formed by silicon wafer direct bonding, Matatials Science Forum 590 (2008) 57-78.

DOI: 10.4028/www.scientific.net/msf.590.57

Google Scholar

[3] H. Föll and D. Ast, TEM observation on grain boundaries in sintered silicon, Phil. Mag. A, 40 (1979) 589-610.

DOI: 10.1080/01418617908234861

Google Scholar

[4] M. Benamara, A. Rocher, A. Laporte, G. Sarrabayrouse, L. Lescouzѐres, A. PeyerLavigne, M. Fnaiech and A. Claverie, Atomic structure of the interface between silicon directly bonded wafers, Mat. Res. Soc. Symp. Proc. 378 (1995) 863-868.

DOI: 10.1557/proc-378-863

Google Scholar

[5] T. Akatsu, R. Scholz, U. Gösele, Dislocation structure in low-angle interface between bonded Si(001) wafers, J. Mat. Sci. 39 (2004) 3031-3039.

DOI: 10.1023/b:jmsc.0000025829.40338.04

Google Scholar

[6] K. Rousseau, J. Eymery, F. Fournel, J.-P. Morniroli, J.-L. Rouviѐre, (001) Ultra silicon surfacial grain boundaries obtained by direct wafer bonding process: accurate control of the structure before bonding, Phil. Mag. 85 (2005) 2415-2448.

DOI: 10.1080/14786430500070834

Google Scholar

[7] M. Trushin, O. Vyvenko, V. Vdovin, M. Kittler, Giant Pool-Frenkel effect for the shallow dislocation-related hole traps in silicon, J. Phys.: Conf. Ser. 281 (2011) 012009-012016.

DOI: 10.1088/1742-6596/281/1/012009

Google Scholar

[8] U. Gösele, Y. Bluhm, G. Kästner, P. Kopperschmidt, G. Kräuter, R. Scholz, A. Schumacher, St. Senz, and Q.-Y. Tong, Fundamental issues in wafer bonding, J. Vac. Sci. Technol. A 17 (1999) 1145-1152.

DOI: 10.1116/1.581788

Google Scholar

[9] F. Fournel, H. Moriceau, and B. Aspar, Accurate control of the misorientation angles in direct wafer bonding, Appl. Phys. Lett. 80 (2002) 793-795.

DOI: 10.1063/1.1446987

Google Scholar

[10] Vdovin V.I., Matveeva L.A., Semenova G.N., Skorohod M.Ya., Tkhorik Yu.A., Khazan L.S., Mechanism of misfit dislocation network formation in the heteroepitaxial system Ge-GaAs (001), Phys. Stat. Sol. (a) 92 (1985) 379-390.

DOI: 10.1002/pssa.2210920206

Google Scholar

[11] J. Coelho, G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons, Dislocation networks adapted to order the growth of III-V semiconductor nanostructures, Phys. Stat. Sol. (c) 2 (2005) 1933-1937.

DOI: 10.1002/pssc.200460528

Google Scholar

[12] T. Wilhelm, T. Mchedlidze, X. Yu, T. Arguirov, M. Kittler, and M. Reiche, Regular dislocation networks in silicon. Part I: Structure, Solid State Phenom. 131-133 (2008) 571-578.

DOI: 10.4028/www.scientific.net/ssp.131-133.571

Google Scholar