Microstructure Evolution of Aluminum Deformed by Combination of KoBo Extrusion and Differential Speed Rolling (DSR)

Article Preview

Abstract:

In the present paper results of a microstructure examination of aluminum deformed by a two step process composed of a combination of two continuous straining methods – the KoBo extrusion and a cold rolling have been shown. The cold rolling was conducted in two variants – with an equal speed of both rolls (ESR) and with a differentiation of the upper ad the lower roll speed (a differential speed rolling – DSR). Results of a transmission electron microscopy (TEM) analysis revealed that applied processing strongly affects a microstructure of the examined material. It is shown that selected parameters of the KoBo extrusion allow obtaining a fine grained material with a grain size in the range of 1÷3 μm. Since a subsequent deformation of as KoBo extruded aluminum bars through the conventional rolling (ESR) leads to a formation of normally observed structural features (e.g. deformation bands), an application of the DSR methods results with a further grain refinement effect. It is found that, the KoBo extrusion combined with the DSR deformation allows obtaining aluminum plates that are characterized by a homogeneous structure with the grain size in the submicron range.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 225)

Pages:

77-84

Citation:

Online since:

December 2014

Export:

Price:

* - Corresponding Author

[1] R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Overview of processing, microstructural and mechanical properteies of UFG bcc steels, Materials Science and Engineering A 441(2006) 1-17.

DOI: 10.1016/j.msea.2006.08.095

Google Scholar

[2] E.A. El-Danaf, M.S. Soliman, A.A. Almajid, M.M. El-Rayes, Enhancement of mechanical properties and grain size refi{TTP}-1279 nement of commercial purity aluminum 1050 processed by ECAP, Materials Science and Engineering A 458 (2007) 226–234.

DOI: 10.1016/j.msea.2006.12.077

Google Scholar

[3] A.P. Zhilyaev, K. Oh-ishi, T.G. Langdon, T.R. McNelly, Microstructural evolution in commercially purity aluminum during high pressure torsion, Materials Science and Engineering A 410-411 (2005) 277-280.

DOI: 10.1016/j.msea.2005.08.044

Google Scholar

[4] A. Korbel, J. Pospiech, W. Bochniak, A. Tarasek, P. Ostachowski, J. Bonarski, New structural and mechanical features of hexagonal materials after room temperature extrusion by KOBO method, Int. J. Mater. Res. 102 (2011) 464-473.

DOI: 10.3139/146.110490

Google Scholar

[5] K. Pieła, W. Bochniak, A. Korbel, P. Ostachowski, L. Błaż, Wpływ sposobu odkształcenia na strukturę, własności mechaniczne i stabilność cieplną cynku, Rudy i Metale Nieżelazne 52 (2009) 356-361 (in Polish).

DOI: 10.15199/67.2017.12.11

Google Scholar

[6] A. Brzostowicz, Conditions and causes of the plastic instability of aluminium, PhD thesis, Department of Non-Ferrous Metals at the AGH University of Science and Technology, Cracow (2012) (in Polish).

Google Scholar

[7] P. Ostachowski, A. Korbel, W. Bochniak, M. Lagoda, Własności mechaniczne drutów aluminiowych otrzymanych metodą KoBo, Rudy i Metale Nieżelazne 54 (2009) 707-710 (In Polish).

Google Scholar

[8] A. Güzel, A. Jager, F. Paravizian, H. -G. Lambers, A. E. Tekkaya, B. Svendsen, H. J. Maier, A new method for determining dynamic grain structure evolution during hot aluminum extrusion. J. Mater. Proc. Techn. 212 (2012) 323-330.

DOI: 10.1016/j.jmatprotec.2011.09.018

Google Scholar

[9] A. K. Sheikh, A.F. Arif, A. Z. Qamar, A probabilistic study of failures of solid and hollow diesin hot aluminum extrusion, J. Mater. Proc. Techn. 155-156 (2004) 1740-1748.

DOI: 10.1016/j.jmatprotec.2004.04.170

Google Scholar

[10] K. Pieła, L. Błaż, M. Jaskowski, Effects of extrusion parameters by KoBo method on the mechanical properties and microstructure of aluminium. Arch. Metall. Mater. 58 (2012) 683-689.

DOI: 10.2478/amm-2013-0055

Google Scholar

[11] A. Korbel, W. Bochniak, P. Ostachowski, L. Błaż, Visco-plastic flow of metal in dynamic conditions of complex strain scheme. Metall. Mater Trans. 42 (2011) 2881-2897.

DOI: 10.1007/s11661-011-0688-x

Google Scholar

[12] J.B. Lee, T.J. Konno, H.G. Jeong, Effect of differential speed rolling on the anisotropy of mechanical properties and texture evolution of AZ31 Mg alloys, Journal of Alloys and Compounds 499 (2010) 273-277.

DOI: 10.1016/j.jallcom.2010.03.186

Google Scholar

[13] Loorentz, Y.G. Ko, Microstructure evolution and mechanical properties of severely deformed Al alloy processed by differential speed rolling, Journal of Alloys and Compounds 536 (2012) S122-S125.

DOI: 10.1016/j.jallcom.2011.12.009

Google Scholar

[14] W. Polkowski, P. Jóźwik, M. Polański, Z. Bojar, Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coeffi{TTP}-1279 cient, Materials Science & Engineering A 564 (2013) 289–297.

DOI: 10.1016/j.msea.2012.12.006

Google Scholar

[15] W. Polkowski, P. Jóźwik, Z. Bojar, Differential speed rolling of Ni3Al based intermetallic alloy - analysis of the deformation process, Materials Letters (2014), in press, doi: 10. 1016/j. matlet. 2014. 09. 129.

DOI: 10.1016/j.matlet.2014.09.129

Google Scholar

[16] Y.G. Ko, C.S. Lee, D.H. Shin, S.L. Semiatin, Low-temperature superplasticity of ultra-fine-grained Ti-6AI-4V processed by equal-channel angular pressing, Metall. Mater. Trans. A, 37 (2006), 381–391.

DOI: 10.1007/s11661-006-0008-z

Google Scholar

[17] Y.G. Ko, J. Suharto, J. S. Lee, B. H. Park, and D. H. Shin, Effect of roll speed ratio on deformation characteristics of IF steel subjected to differential speed rolling, Met Mater Int 19 (2013) 603-609.

DOI: 10.1007/s12540-013-3033-7

Google Scholar

[18] A. W. Brzostowicz, M. Jaskowski, W. Bochniak, K. Pieła, A. Brzostowicz, Lüders effect in Al 99. 7% extruded via the KoBo method, International Journal of Materials Research 105 (2014) 894-899.

DOI: 10.3139/146.111094

Google Scholar

[19] Q. Liu, X. Huang, D.J. Lloyd. N. Hansen, Microstructure and strength of commercial purity aluminum (AA 1200) cold rolled to large strains, Acta Materialia 50 (2002) 3789-3802.

DOI: 10.1016/s1359-6454(02)00174-x

Google Scholar

[20] Y. Ito, Z. Horita, Microstructural evolution in pure aluminum processed by high-pressure torsion, Materials Science and Engineering A 503 (2009) 32–36.

DOI: 10.1016/j.msea.2008.03.055

Google Scholar

[21] K. Hamad, B.K. Chung, Y.G. Ko, Effect of deformation path on microstructure, microhardness and texture evolution of interstitial free steel fabricated by differential speed rolling, Materials Characterization 94 (2014) 203–214.

DOI: 10.1016/j.matchar.2014.05.019

Google Scholar

[22] R.B. Megantoro, Loorentz, Y.G. Ko, Temperature rise during differential speed rolling, Journal of Alloys and Compounds 586 (2014) S254-S257.

DOI: 10.1016/j.jallcom.2012.11.173

Google Scholar