[1]
Kim, S.; Hawkes, E.; Cho, K.; Jolda, M.; Foley, J and Wood, R: Micro artificial muscle fiber using NiTi Spring for soft robotics, 978-1-4244-3804, IEEE, (2009).
DOI: 10.1109/iros.2009.5354178
Google Scholar
[2]
Majidi, C.: Soft Robotics A Perspective- Current Trends and Prospects for the Future, Soft robotics, Volume 1, Number 1, (2014).
DOI: 10.1089/soro.2013.0001
Google Scholar
[3]
Drossel, W. -G.; Schlegel, H.; Walther, M.; Zimmermann, P.; and Bucht, A.: New Concepts for distributed actuators and Their Control, Soft Robotics Transferring Theory to Application, Springer, pp.19-32, (2015).
DOI: 10.1007/978-3-662-44506-8_3
Google Scholar
[4]
Seok, S.; Onal, C.O.; Wood, R.; Rus, D.; and Kim, S.: Peristaltic locomotion with antagonistic actuators in soft robotics, Anchorage, Alaska, USA, (2010).
DOI: 10.1109/robot.2010.5509542
Google Scholar
[5]
Hino, T.; Maeno, T.: Development of a Miniature robot Finger with a Variable Stiffness Mechanism using Shape Memory Alloy, Queretaro, Mexico, (2004).
Google Scholar
[6]
Newell, G.E.: The role of the coelomic fluid in the movements of earthworms, Journal of Experimental Biology, 27: 110-122, (1950).
DOI: 10.1242/jeb.27.1.110
Google Scholar
[7]
Menciassi, A.; Gorini, S.; Pernorio,G.; Dario,P.: A SMA Actuated Artificial Earthworm, IEEE Internaltional Conference on Robotics and Automation 2004 Proceedings ICRA 04 2004 4: 3282-3287 Vol. 4.
DOI: 10.1109/robot.2004.1308760
Google Scholar
[8]
Liu, C.Y.; Liao, W.H.: A Snake Robot Using Shape Memory Alloys, Proceedings of the IEEE, International Conference on Robotics and Biomimetics, Shenyang, China, (2004).
DOI: 10.1109/robio.2004.1521848
Google Scholar
[9]
Cianchetti, M.; Arienti, A.; Follador, M.; Mazzolai, B.; Dario, P.; Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus, Materials Science and Engineering C 31 (2011) 1230-1239.
DOI: 10.1016/j.msec.2010.12.004
Google Scholar
[10]
Chou, C.P.; Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles, IEEE Trans. On Robotics and Automation, Vol. 12, No. 1, pp.90-102, February (1996).
DOI: 10.1109/70.481753
Google Scholar
[11]
Šitum, Z.; Herceg, S.: Design and Control of a Manipulator Arm Driven by Pneumatic Muscle Actuators, 16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France, June 25-27, (2008).
DOI: 10.1109/med.2008.4602136
Google Scholar
[12]
Schiedeck, F.: Entwicklung eines Modells fuer Formgedaechtnisaktoren im geregelten dynamischen Betrieb, Dissertation, Leibniz Universitaet Hannover, (2009).
Google Scholar
[13]
Pagel, K.; Bucht, A.; Jung, J.: Numerische Simulation des Aktivierungsverhaltens von thermischen Formgedaechtnislegierungen, Model Based Design Forum, Darmstadt, (2009).
Google Scholar
[14]
Oelschlaeger, L.: Numerische Modellierung des Aktivierungsverhaltens von Formgedaechtnisaktoren am Beispiel eines Schrittantriebes, Dissertation, Shaker Verlag, (2004).
Google Scholar
[15]
Madill, D. R; Wang, D.: Modeling and L2-Stability of a Shape Memory Alloy Position Control System. In: IEEE, Transactions on Control Systems Technology Bd. 6, Juli 1998, S. 473-481.
DOI: 10.1109/87.701339
Google Scholar
[16]
Åström, K. J.; Hägglund, T.: Advanced PID Control. ISA, (2005).
Google Scholar
[17]
O'Dwyer, A.: Handbook of PI and PID Controller Tuning Rules. Imperial College Press, (2006).
Google Scholar