Antagonistic Shape Memory Alloy Actuators in Soft Robotics

Article Preview

Abstract:

The paper presents research concerning the utilization of shape memory alloys in terms of an antagonistic actuator system. The main focus is to determine arrangements for the necessary movements and also to evaluate a suitable control methodology. Most use cases of soft robotics can be accomplished by either linear actuators (cf. earthworm), circular actuators (cf. brachial joint) or a combination of both. Hence, for the research, those two scenarios were taken into account. The paper describes the used simulation model, which bases on a thermo-mechanical submodel of a single SMA actuator. It complements interconnections of physical parameters like temperature, percentage of martensite, elongation and tension. Furthermore, it is shown, how the submodels are connected in a suitable way to establish the required use cases.The position control of either the transversal position or the angle is realized by a PID or PI controller. The paper also shows the impact of parameter changes in the SMA on the achievable position accuracy. Also different strategies for controller design will be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 251)

Pages:

126-132

Citation:

Online since:

July 2016

Export:

Price:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kim, S.; Hawkes, E.; Cho, K.; Jolda, M.; Foley, J and Wood, R: Micro artificial muscle fiber using NiTi Spring for soft robotics, 978-1-4244-3804, IEEE, (2009).

DOI: 10.1109/iros.2009.5354178

Google Scholar

[2] Majidi, C.: Soft Robotics A Perspective- Current Trends and Prospects for the Future, Soft robotics, Volume 1, Number 1, (2014).

DOI: 10.1089/soro.2013.0001

Google Scholar

[3] Drossel, W. -G.; Schlegel, H.; Walther, M.; Zimmermann, P.; and Bucht, A.: New Concepts for distributed actuators and Their Control, Soft Robotics Transferring Theory to Application, Springer, pp.19-32, (2015).

DOI: 10.1007/978-3-662-44506-8_3

Google Scholar

[4] Seok, S.; Onal, C.O.; Wood, R.; Rus, D.; and Kim, S.: Peristaltic locomotion with antagonistic actuators in soft robotics, Anchorage, Alaska, USA, (2010).

DOI: 10.1109/robot.2010.5509542

Google Scholar

[5] Hino, T.; Maeno, T.: Development of a Miniature robot Finger with a Variable Stiffness Mechanism using Shape Memory Alloy, Queretaro, Mexico, (2004).

Google Scholar

[6] Newell, G.E.: The role of the coelomic fluid in the movements of earthworms, Journal of Experimental Biology, 27: 110-122, (1950).

DOI: 10.1242/jeb.27.1.110

Google Scholar

[7] Menciassi, A.; Gorini, S.; Pernorio,G.; Dario,P.: A SMA Actuated Artificial Earthworm, IEEE Internaltional Conference on Robotics and Automation 2004 Proceedings ICRA 04 2004 4: 3282-3287 Vol. 4.

DOI: 10.1109/robot.2004.1308760

Google Scholar

[8] Liu, C.Y.; Liao, W.H.: A Snake Robot Using Shape Memory Alloys, Proceedings of the IEEE, International Conference on Robotics and Biomimetics, Shenyang, China, (2004).

DOI: 10.1109/robio.2004.1521848

Google Scholar

[9] Cianchetti, M.; Arienti, A.; Follador, M.; Mazzolai, B.; Dario, P.; Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus, Materials Science and Engineering C 31 (2011) 1230-1239.

DOI: 10.1016/j.msec.2010.12.004

Google Scholar

[10] Chou, C.P.; Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles, IEEE Trans. On Robotics and Automation, Vol. 12, No. 1, pp.90-102, February (1996).

DOI: 10.1109/70.481753

Google Scholar

[11] Šitum, Z.; Herceg, S.: Design and Control of a Manipulator Arm Driven by Pneumatic Muscle Actuators, 16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France, June 25-27, (2008).

DOI: 10.1109/med.2008.4602136

Google Scholar

[12] Schiedeck, F.: Entwicklung eines Modells fuer Formgedaechtnisaktoren im geregelten dynamischen Betrieb, Dissertation, Leibniz Universitaet Hannover, (2009).

Google Scholar

[13] Pagel, K.; Bucht, A.; Jung, J.: Numerische Simulation des Aktivierungsverhaltens von thermischen Formgedaechtnislegierungen, Model Based Design Forum, Darmstadt, (2009).

Google Scholar

[14] Oelschlaeger, L.: Numerische Modellierung des Aktivierungsverhaltens von Formgedaechtnisaktoren am Beispiel eines Schrittantriebes, Dissertation, Shaker Verlag, (2004).

Google Scholar

[15] Madill, D. R; Wang, D.: Modeling and L2-Stability of a Shape Memory Alloy Position Control System. In: IEEE, Transactions on Control Systems Technology Bd. 6, Juli 1998, S. 473-481.

DOI: 10.1109/87.701339

Google Scholar

[16] Åström, K. J.; Hägglund, T.: Advanced PID Control. ISA, (2005).

Google Scholar

[17] O'Dwyer, A.: Handbook of PI and PID Controller Tuning Rules. Imperial College Press, (2006).

Google Scholar