[1]
Hench, L. L. (1998). Biomaterials: A forecast for the future. Biomaterials, Vol. 19, 1419-1423.
DOI: 10.1016/s0142-9612(98)00133-1
Google Scholar
[2]
Suchanek, W & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., Vol. 13, 94-117.
DOI: 10.1557/jmr.1998.0015
Google Scholar
[3]
Adamopoulos, O. & Papadopoulos, T. (2007). Nanostructured bioceramics for maxillofacial applications. J. Mater. Sci: Mater. Med., Vol. 18, 1587-1597.
DOI: 10.1007/s10856-007-3041-6
Google Scholar
[4]
Suchanek, W., Yashima, M., Kakihana, M. & Yoshimura, M. (1997). Hydroxyapatite ceramics with selected sintering additives. Biomaterials, Vol. 18, 923-933.
DOI: 10.1016/s0142-9612(97)00019-7
Google Scholar
[5]
Muralithran, G. & Ramesh, S. (2000). The effect of MnO2 addition on the sintering behavior of hydroxyapatite. Biomed. Eng. App, Basis & Comm., Vol. 12, 43-48.
Google Scholar
[6]
Kalita, S. J., Bhardwaj, A. & Bhatt, H. A. (2007). Nanocrytalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng. C, Vol. 27, 441-449.
DOI: 10.1016/j.msec.2006.05.018
Google Scholar
[7]
Georgiou, G. & Knowles, J. C. (2001). Glass reinforced hydroxyapatite for hard tissue surgery—Part 1: mechanical properties. Biomaterials, Vol. 22 (20) 2811-2815.
DOI: 10.1016/s0142-9612(01)00025-4
Google Scholar
[8]
Khalil, K. A., Kim, S. W. & Kim, H. Y. (2007). Consolidation and mechanical properties of nanostructured hydroxyapatite–(ZrO2 + 3 mol% Y2O3) bioceramics by high-frequency induction heat sintering. Mater. Sci. Eng. A, Vol. 456, 368-372.
DOI: 10.1016/j.msea.2006.12.005
Google Scholar
[9]
Sato, M., Sambito, M. A., Aslani, A., Kalkhoran, N. M., Slamovich, E. B. & Webster, T. J. (2006).
Google Scholar
[10]
Ramesh, S., Tan, C. Y., Peralta, C. L. & Teng, W. D. (2007). The effect of manganese oxide on the sinterability of hydroxyapatite. Science and Technology of Advance Materials, Vol. 8, 257-263.
DOI: 10.1016/j.stam.2007.02.006
Google Scholar
[11]
Kalita, S. J. & Bhatt, H. A. (2007). Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Mater. Sci and Eng C, Vol. 27, 837-848. (2007).
DOI: 10.1016/j.msec.2006.09.036
Google Scholar
[12]
Webster, T J., Massa-Schlueter, E A., Smith, J. L. & Slamovich, E. B. (2004). Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, Vol. 25, 2111-2121.
DOI: 10.1016/j.biomaterials.2003.09.001
Google Scholar
[13]
Ramesh, S. (2004). A method for manufacturing hydroxyapatite bioceramic, Malaysia Patent, No. PI. 20043325.
Google Scholar
[14]
ASTM E1876-97 (1998) Standard test method for dynamic Young's modulus, shear modulus and Poisson's ratio by impulse excitation of vibration, Annual Book of ASTM Standards.
DOI: 10.1520/e1876-22
Google Scholar
[15]
Niihara, K. (1985). Indentation microfracture of ceramics – its application and problems. Ceramic Jap. Vol. 20, 12-18.
Google Scholar
[16]
Fanovich, M. A. & Lopez, J. M. P. (1998). Influence of temperature and additives on the microstructure and sintering Behaviour of hydroxyapatites with different Ca/P ratios. J. Mater. Sci.: Mater. Med., Vol. 9, 53-60.
Google Scholar
[17]
Raynaud, S., Champion, E. & Bernache-Assollant, D. (2002b). Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and Sintering. Biomaterials, Vol. 23, 1073-1080.
DOI: 10.1016/s0142-9612(01)00219-8
Google Scholar
[18]
Bandyopadhyay, A., Withey, E. A., Moore, J. & Bose, S. (2007). Influence of ZnO doping in calcium phosphate ceramics. Mater. Sci. Eng. C, Vol. 27, 14-17.
DOI: 10.1016/j.msec.2005.11.004
Google Scholar
[19]
Santos, J. D., Silva, P. L., Knowles, J. C. & Hasting, G. W. (1995). Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions- structure and properties of the composites. J. Mater. Sci: Mater. Med., 6, 348-352.
DOI: 10.1007/bf00120303
Google Scholar
[20]
Shuk, P., Wiemhofer, H. –D., Guth, U., Gopel, W. & Greenblatt, M. (1996) Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics, Vol. 89, 179-196.
DOI: 10.1016/0167-2738(96)00348-7
Google Scholar
[21]
Liu, D. -M. (1998). Preparation and characterization of porous hydroxyapatite bioceramic via a slip-casting route. Ceram. Inter., Vol. 24, 441-446.
DOI: 10.1016/s0272-8842(97)00033-3
Google Scholar
[22]
Rodríguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F., Ginebra, M.P., Aparicio, C. & Planell, J.A. (2002).
Google Scholar
[23]
Kalita, S.J., Bose, S., Hosick, H.L. & Bandyopadhyay, A. (2004). CaO–P2O5–Na2O based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials, Vol. 25, 2331-2339.
DOI: 10.1016/j.biomaterials.2003.09.012
Google Scholar
[24]
Filho, F. P., Nogueira, R. E. F. Q., Graca, M. P. F., Valente, M.A., Sombra, A.S.B. & Silva, C. C. (2008).
Google Scholar
[25]
Georgiou, G. & Knowles, J. C. (2001). Glass Reinforced Hydroxyapatite for Hard Tissue Surgery- Part 1: Mechanical Properties. Biomaterials, Vol. 22, 2811-2815.
DOI: 10.1016/s0142-9612(01)00025-4
Google Scholar