Effects of Bismuth Oxide on the Properties of Calcium Phosphate Bioceramics

Article Preview

Abstract:

The aim of this work is to study the phase stability and sinterability of bismuth oxide (Bi2O3) doped HA ranging from 0.05 wt% to 1 wt%. The green samples were sintered in air at temperature ranging from 1000oC to 1400oC. In this experiment, the results from XRD analysis revealed that the stability of HA phase was disrupted when addition of 0.3, 0.5 and 1.0 wt% Bi2O3 were used and when samples sintered above 1100oC, 1000oC and 950oC, respectively. In general, HA containing 0.5 wt% of Bi2O3 and when sintered at 1000oC was found to be beneficial in enhancing densification, Young’s modulus, Vickers hardness and fracture toughness. Throughout the sintering regime, the highest value of relative bulk density of 98.7% was obtained for 0.5 wt% Bi2O3-doped HA when sintered at 1000oC. A maximum Young’s modulus of 119.2 GPa was observed for 0.1 wt% Bi2O3-doped HA when sintered at 1150oC. Additionally, 0.5 wt% Bi2O3-doped HA was able to achieve highest hardness of 6.04 GPa and fracture toughness of 1.21 MPam1/2 at sintering temperature of 1000oC. Furthermore, the Young’s modulus of HA was found to vary linearly with bulk density.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1839-1848

Citation:

Online since:

June 2011

Export:

Price:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hench, L. L. (1998). Biomaterials: A forecast for the future. Biomaterials, Vol. 19, 1419-1423.

DOI: 10.1016/s0142-9612(98)00133-1

Google Scholar

[2] Suchanek, W & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., Vol. 13, 94-117.

DOI: 10.1557/jmr.1998.0015

Google Scholar

[3] Adamopoulos, O. & Papadopoulos, T. (2007). Nanostructured bioceramics for maxillofacial applications. J. Mater. Sci: Mater. Med., Vol. 18, 1587-1597.

DOI: 10.1007/s10856-007-3041-6

Google Scholar

[4] Suchanek, W., Yashima, M., Kakihana, M. & Yoshimura, M. (1997). Hydroxyapatite ceramics with selected sintering additives. Biomaterials, Vol. 18, 923-933.

DOI: 10.1016/s0142-9612(97)00019-7

Google Scholar

[5] Muralithran, G. & Ramesh, S. (2000). The effect of MnO2 addition on the sintering behavior of hydroxyapatite. Biomed. Eng. App, Basis & Comm., Vol. 12, 43-48.

Google Scholar

[6] Kalita, S. J., Bhardwaj, A. & Bhatt, H. A. (2007). Nanocrytalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng. C, Vol. 27, 441-449.

DOI: 10.1016/j.msec.2006.05.018

Google Scholar

[7] Georgiou, G. & Knowles, J. C. (2001). Glass reinforced hydroxyapatite for hard tissue surgery—Part 1: mechanical properties. Biomaterials, Vol. 22 (20) 2811-2815.

DOI: 10.1016/s0142-9612(01)00025-4

Google Scholar

[8] Khalil, K. A., Kim, S. W. & Kim, H. Y. (2007). Consolidation and mechanical properties of nanostructured hydroxyapatite–(ZrO2 + 3 mol% Y2O3) bioceramics by high-frequency induction heat sintering. Mater. Sci. Eng. A, Vol. 456, 368-372.

DOI: 10.1016/j.msea.2006.12.005

Google Scholar

[9] Sato, M., Sambito, M. A., Aslani, A., Kalkhoran, N. M., Slamovich, E. B. & Webster, T. J. (2006).

Google Scholar

[10] Ramesh, S., Tan, C. Y., Peralta, C. L. & Teng, W. D. (2007). The effect of manganese oxide on the sinterability of hydroxyapatite. Science and Technology of Advance Materials, Vol. 8, 257-263.

DOI: 10.1016/j.stam.2007.02.006

Google Scholar

[11] Kalita, S. J. & Bhatt, H. A. (2007). Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Mater. Sci and Eng C, Vol. 27, 837-848. (2007).

DOI: 10.1016/j.msec.2006.09.036

Google Scholar

[12] Webster, T J., Massa-Schlueter, E A., Smith, J. L. & Slamovich, E. B. (2004). Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, Vol. 25, 2111-2121.

DOI: 10.1016/j.biomaterials.2003.09.001

Google Scholar

[13] Ramesh, S. (2004). A method for manufacturing hydroxyapatite bioceramic, Malaysia Patent, No. PI. 20043325.

Google Scholar

[14] ASTM E1876-97 (1998) Standard test method for dynamic Young's modulus, shear modulus and Poisson's ratio by impulse excitation of vibration, Annual Book of ASTM Standards.

DOI: 10.1520/e1876-22

Google Scholar

[15] Niihara, K. (1985). Indentation microfracture of ceramics – its application and problems. Ceramic Jap. Vol. 20, 12-18.

Google Scholar

[16] Fanovich, M. A. & Lopez, J. M. P. (1998). Influence of temperature and additives on the microstructure and sintering Behaviour of hydroxyapatites with different Ca/P ratios. J. Mater. Sci.: Mater. Med., Vol. 9, 53-60.

Google Scholar

[17] Raynaud, S., Champion, E. & Bernache-Assollant, D. (2002b). Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and Sintering. Biomaterials, Vol. 23, 1073-1080.

DOI: 10.1016/s0142-9612(01)00219-8

Google Scholar

[18] Bandyopadhyay, A., Withey, E. A., Moore, J. & Bose, S. (2007). Influence of ZnO doping in calcium phosphate ceramics. Mater. Sci. Eng. C, Vol. 27, 14-17.

DOI: 10.1016/j.msec.2005.11.004

Google Scholar

[19] Santos, J. D., Silva, P. L., Knowles, J. C. & Hasting, G. W. (1995). Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions- structure and properties of the composites. J. Mater. Sci: Mater. Med., 6, 348-352.

DOI: 10.1007/bf00120303

Google Scholar

[20] Shuk, P., Wiemhofer, H. –D., Guth, U., Gopel, W. & Greenblatt, M. (1996) Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics, Vol. 89, 179-196.

DOI: 10.1016/0167-2738(96)00348-7

Google Scholar

[21] Liu, D. -M. (1998). Preparation and characterization of porous hydroxyapatite bioceramic via a slip-casting route. Ceram. Inter., Vol. 24, 441-446.

DOI: 10.1016/s0272-8842(97)00033-3

Google Scholar

[22] Rodríguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F., Ginebra, M.P., Aparicio, C. & Planell, J.A. (2002).

Google Scholar

[23] Kalita, S.J., Bose, S., Hosick, H.L. & Bandyopadhyay, A. (2004). CaO–P2O5–Na2O based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials,  Vol. 25, 2331-2339.

DOI: 10.1016/j.biomaterials.2003.09.012

Google Scholar

[24] Filho, F. P., Nogueira, R. E. F. Q., Graca, M. P. F., Valente, M.A., Sombra, A.S.B. & Silva, C. C. (2008).

Google Scholar

[25] Georgiou, G. & Knowles, J. C. (2001). Glass Reinforced Hydroxyapatite for Hard Tissue Surgery- Part 1: Mechanical Properties. Biomaterials, Vol. 22, 2811-2815.

DOI: 10.1016/s0142-9612(01)00025-4

Google Scholar