[1]
An, G.H., Wang, H.J., Kim, B.H., Jeong, Y.G. and Choa, Y.H., Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition, Materials Science and Engineering: A, Vol. 449-451, 2007, pp.821-824.
DOI: 10.1016/j.msea.2006.02.436
Google Scholar
[2]
Ramesh, S., Tan, C.Y., Sopyan, I., Hamdi, M. and Teng, W.D., Consolidation of nanocrystalline hydroxyapatite powder, Sci. and Tech. Adv. Mater., Vol. 8, 2007, pp.124-130.
DOI: 10.1016/j.stam.2006.11.002
Google Scholar
[3]
Afshar, A., Ghorbani, M., Ehsani, N., Saeri, M.R. and Sorrell, C.C., Some important factors in the wet precipitation process of hydroxyapatite, Materials and Design, Vol. 24, 2003, pp.197-202.
DOI: 10.1016/s0261-3069(03)00003-7
Google Scholar
[4]
Jingbing, L., Ye, X., Wang, H., Zhu, M., Wang, B. and Yan, H., The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceram. Inter., Vol. 29, 2003, pp.629-633.
DOI: 10.1016/s0272-8842(02)00210-9
Google Scholar
[5]
Bandyopadhyay, A., Withey, E.A., Moore, J. and Bose, S., Influence of ZnO doping in calcium phosphate ceramics, Materials Science and Engineering: C, Vol. 27, 2007, pp.14-17.
DOI: 10.1016/j.msec.2005.11.004
Google Scholar
[6]
Manjubala, I. and Kumar, S.S., Effect of TiO2–Ag2O additives on the formation of calcium phosphate based functionally graded bioceramics, Biomaterials, Vol. 21, 2000, p.1995-(2002).
DOI: 10.1016/s0142-9612(00)00092-2
Google Scholar
[7]
Zreiqat, H., Howlett, C.R., Zannettino, A., Evans, P., Schulze-Tanzil, G. and Knabe, C., Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, J. Biomed. Mater. Res., Vol. 62, 2002, pp.75-184.
DOI: 10.1002/jbm.10270
Google Scholar
[8]
Tan, C.Y., Aw, K.L., Yeo, W.H., Ramesh, S., Hamdi, M. and Sopyan, I., Influence of magnesium doping in hydroxyapatite ceramics, IFMBE Proceedings Biomed 2008 "4th Kuala Lumpur International Conference on Biomedical Engineering. (International Federation for Medical and Biological Engineering, Vol. 21, Springer-Verlag Berlin Heidelberg 2008: ISSN 1680-0737) p.326.
DOI: 10.1007/978-3-540-69139-6_83
Google Scholar
[9]
Ramesh, S., A method for manufacturing hydroxyapatite bioceramic, Malaysia Patent, (PI. 20043325) (2004).
Google Scholar
[10]
ASTM E1876-97, Standard test method for dynamic Young's modulus, Shear modulus and Poisson's ratio by impulse excitation of vibration, 1998, ASTM International.
DOI: 10.1520/e1876
Google Scholar
[11]
Niihara, K., Morena, R. and Hasselman, D.P.H., Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Letts., Vol. 1, 1982, pp.13-16.
DOI: 10.1007/bf00724706
Google Scholar
[12]
Staiger, M.P., Pietak, A.M., Huadmai, J. and Dias, G., Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, Vol. 27, 2006, pp.1728-1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[13]
Hench, L.L., Bioceramics: from concept to clinical, J. Am. Ceram. Soc., Vol. 74, 1991, pp.1487-1510.
Google Scholar
[14]
Duan, Y., Wang, C., Cheng, J. and Zhang, X., Bone-like apatite formation in intramuscularly implanted calcium phosphate ceramics in different kinds of animal, J. Mater. Sci. Lett., Vol. 21, 2002, pp.775-778.
Google Scholar
[15]
Flautre, B., Descamps, M., Delecourt, C., Blary, M.C. and Hardouin, P., Porous HA ceramic for bone replacement: Role of the pores and interconnections – Experimental study in the rabbits, J. Mater. Sci.: Mater. Med., Vol. 12, 2001, pp.679-682.
DOI: 10.1023/a:1011256107282
Google Scholar
[16]
Rivera-Munoz, E., Diaz, J.R., Rodriguez, J.R., Brostow, W. and Castano, V.M., Hydroxyapatite spheres with controlled porosity for eye ball prosthesis: Processing and characterization, J. Mater. Sci.: Mater. Med., Vol. 12, 2001, pp.305-311.
Google Scholar