Transition Metal Defects in Cubic and Hexagonal Polytypes of SiC: Site Selection, Magnetic and Optical Properties from Ab Initio Calculations

Article Preview

Abstract:

Relatively little is known about the transition metal defects in silicon carbide (SiC). In this study we applied highly convergent and sophisticated density functional theory (DFT) based methods to investigate important transition metal impurities including titanium (Ti), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo) and tungsten (W) in cubic 3C and hexagonal 4H and 6H polytypes of SiC. We found two classes among the considered transition metal impurities: Ti, V and Cr clearly prefer the Si-substituting configuration while W, Nb, and Mo may fractionally form a complex with carbon vacancy in hexagonal SiC even under thermal equilibrium. If the metal impurity is implanted into SiC or when many carbon impurities exist during the growth of SiC then complex formation between Si-substituting metal impurity and the carbon vacancy should be considered. This complex pair configuration exclusively prefers the hexagonal-hexagonal sites in hexagonal polytypes and may be absent in cubic polytype. We also studied transition metal doped nano 3C-SiC crystals in order to check the effect of the crystal field on the d-orbitals of the metal impurity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

205-210

Citation:

Online since:

May 2012

Export:

Price:

[1] H. M. Hobgood, R. C. Glass, G. Augustine, R. H. Hopkins, J. R. Jenny, M. Skowronski, W. C. Mitchel, and M. Roth, Appl. Phys. Lett. 66 (1995) 1364.

DOI: 10.1063/1.113202

Google Scholar

[2] N. T. Son, V. Ivády, A. Gali, A. Gällström, S. Leone, O. Kordina, and E. Janzén, these proceedings.

Google Scholar

[3] A. Gällström, B. Magnusson, F. Beyer, A. Gali, N. T. Son, S. Leone, I. Ivanov, A. Henry, and E. Janzén, these proceedings.

Google Scholar

[4] J. Schneider, A. Dörnen, S. Leibenzeder, and R. Stein, Appl. Phys. Lett. 56 (1990) 1184.

Google Scholar

[5] N. T. Son, A. Ellison, B. Magnusson, M. F. MacMillan, W. M. Chen, B. Monemar, and E. Janzén, J. Appl. Phys. 86 (1999) 4348.

Google Scholar

[6] Recent Major Advances in SiC, edited by W. J. Choyke, H. Matsunami, and G. Pensl (Springer-Verlag, Berlin Heidelberg, 2004).

Google Scholar

[7] A. Gällström, B. Magnusson, and E. Janzén, Mater. Sci. Forum 615-617 (2009) 405.

Google Scholar

[8] F. C. Beyer, C. G. Hemmingsson, A. Gällström, S. Leone, H. Pedersen, A. Henry, and E. Janzén, Appl. Phys. Lett. 98, (2011) 152104.

DOI: 10.1063/1.3579527

Google Scholar

[9] N. Achtziger, J. Grillenberger, and W. Witthuhn, Appl. Phys. A 65 (1997) 329.

Google Scholar

[10] P. Carlsson, N. T. Son, A. Gali, J. Isoya, N. Morishita, T. Ohshima, B. Magnusson, and E. Janzén, Phys. Rev. B 82 (2010) 235203.

Google Scholar

[11] T. Hornos, A. Gali, and B. G. Svensson, Mater. Sci. Forum 679-680 (2011) 261.

Google Scholar

[12] M. S. Miao, and W. R. L. Lambrecht, Phys. Rev. B 74 (2006) 235218.

Google Scholar

[13] I. I. Parfenova, Semiconductors 38 (2004) 189.

Google Scholar

[14] L. V. C. Assali, W. V. M. Machado, and J. F. Justo, Phys. Rev. B 69 (2004) 155212.

Google Scholar

[15] V. L. Shaposhnikov, and N. A. Sobolev, J. Phys.: Condens. Matter 16 (2004) 1761.

Google Scholar

[16] M. Vörös, P. Deák, T. Frauenheim, and A. Gali, Appl. Phys. Lett. 96 (2010) 051909.

DOI: 10.1063/1.3356049

Google Scholar