Identification of Niobium in 4H-SiC by EPR and Ab Initio Studies

Article Preview

Abstract:

In unintentionally Nb-doped 4H-SiC grown by high-temperature chemical vapor deposition (HTCVD), an electron paramagnetic resonance (EPR) center with C1h symmetry and an electron spin S=1/2 was observed. The spectrum shows a hyperfine structure consisting of ten equal-intensity hyperfine (hf) lines which is identified as due to the hf interaction between the electron spin and the nuclear spin of 93Nb. An additional hf structure due to the interaction with two equivalent Si neighbors was also observed. Ab initio supercell calculations of Nb in 4H-SiC suggest that Nb may form complex with a C-vacancy (VC) resulting in an asymmetric split-vacancy (ASV) defect, NbSi-VC. Combining results from EPR and supercell calculations, we assign the observed Nb-related EPR center to the hexagonal-hexagonal configuration of the AVS defect in the neutral charge state, (NbSi-VC)0.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

217-220

Citation:

Online since:

May 2012

Export:

Price:

[1] M. S. Miao and W. R. L. Lambrecht, Phys. Rev. B 74 (2006) 235218.

Google Scholar

[2] W. J. Choyke and L. Patrick, Silicon Carbide l973 (University of South Carolina Press, Columbia, 1974), p.261.

Google Scholar

[3] A. W. C. Van Kemenade and S. H. Hagen, Solid State Commun. 14 (1974) 1331.

Google Scholar

[4] K. M. Lee, Le Si Dang, G. D. Watkins, and W. J. Choyke, Phys. Rev. B 32 (1985) 2273.

Google Scholar

[5] J. Schneider, A. Dörnen, S. Leibenzeder, and R. Stein, Appl. Phys. Lett. 56 (1990) 1184.

Google Scholar

[6] J. Baur, M. Kunzer, and J. Schneider, Phys. Stat. Sol. (a) 162 (1997) 153.

Google Scholar

[7] P. G. Baranov, V. A. Khramtsov, and E. N. Mokhov, Semicond. Sci. Technol. 9 (1994) 1340.

Google Scholar

[8] N. T. Son, A. Ellison, B. Magnusson, M. F. MacMillan, W. M. Chen, B. Monemar, and E. Janzén, J. Appl. Phys. 86 (1999) 4348.

Google Scholar

[9] J. Baur, M. Kunzer, K. F. Dombrowski, U. Kaufmann, J. Schneider, P.G. Baranov, and E. N. Mokhov, Inst. Phys. Conf. Ser. 155 (1997) 933.

Google Scholar

[10] K. Irmscher, I. Pintilie, L. Pintilie, D. Schulz, Physica B 308-310 (2001) 730.

DOI: 10.1016/s0921-4526(01)00887-0

Google Scholar

[11] L. V. C. Assali, W. V. M. Machado, and J. F. Justo, Appl. Phys. Lett. 89 (2006) 072102.

Google Scholar

[12] S. Decoster, S. Cottenier, B. De Vries, H. Emmerich, U. Wahl, J. G. Correia, and A. Vantomme, Phys. Rev. Lett. 102 (2009) 065502.

DOI: 10.1103/physrevlett.102.065502

Google Scholar

[13] N. T. Son, B. Magnusson, Z. Zolnai, A. Ellison, and E. Janzén, Mater. Sci. Forum 457-460 (2004) 437.

DOI: 10.4028/www.scientific.net/msf.457-460.437

Google Scholar

[14] G. Kresse and J. Furthmüller, Phys. Rev. B 54 (1996) 11169.

Google Scholar

[15] P. E. Blöchl, Phys. Rev. B 50 (1994) 17953.

Google Scholar

[16] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[17] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118 (2003) 8207.

Google Scholar

[18] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125 (2006) 224106.

Google Scholar

[19] M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys.: Condens. Matter 20 (2008) 064201.

DOI: 10.1088/0953-8984/20/6/064201

Google Scholar

[20] P. Deák, B. Aradi, T. Frauenheim, E. Janzén, and A. Gali, Phys. Rev. B 81 (2010) 153203.

Google Scholar